
Knapsack with compactness: a semidefinite approach
Hubert Villuendas∗

University Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, LIG, France

Mathieu Besançon
University Grenoble Alpes, Inria, CNRS, LIG, France

Jérôme Malick
University Grenoble Alpes, CNRS, Grenoble INP, LJK, France

Abstract

The min-knapsack problem with compactness constraints extends the classical knapsack problem, in the
case of ordered items, by introducing a restriction ensuring that they cannot be too far apart. This problem
has applications in statistics, particularly in the detection of change-points in time series. In this paper, we
propose a semidefinite programming approach for this problem, incorporating compactness in constraints or
in objective. We study and compare the different relaxations, and argue that our method provides high-quality
heuristics and tight bounds. In particular, the single hyperparameter of our penalized semidefinite models
naturally balances the trade-off between compactness and accuracy of the computed solutions. Numerical
experiments illustrate, on the hardest instances, the effectiveness and versatility of our approach compared
to the existing mixed-integer programming formulation.
Keywords: Combinatorial optimization, Knapsack, Cutting, Semidefinite programming

1. Introduction

1.1. Knapsack and compactness
We consider the min-knapsack problem with a "compactness" constraint. Given 𝑛 items, each with a

weight 𝑤𝑖 ≥ 0 and a cost 𝑐𝑖 ≥ 0, the min-knapsack consists in selecting a subset of elements of minimum
cost and whose weight is at least a certain threshold. This problem formulates as

⎡

⎢

⎢

⎣

minimize 𝑐⊤𝑥
subject to 𝑤⊤𝑥 ≥ 𝑞

𝑥 ∈ {0, 1}𝑛
(mKP)

∗Corresponding author
Email adresses: { hubert.villuendas , mathieu.besancon , jerome.malick }@univ-grenoble-alpes.fr

April 28, 2025

ar
X

iv
:2

50
4.

17
54

3v
2

 [
m

at
h.

O
C

]
 2

5
A

pr
 2

02
5

which is equivalent to the classical maximization knapsack Csirik & Frenk (1991). Indeed, (mKP) is related
to its "complement" instance:

⎡

⎢

⎢

⎣

minimize 𝑐⊤𝑥
subject to 𝑤⊤𝑥 ≥ 𝑞

𝑥 ∈ {0, 1}𝑛
⇔

⎡

⎢

⎢

⎢

⎢

⎣

maximize 𝑐⊤𝑧

subject to 𝑤⊤𝑧 ≤
𝑛
∑

𝑖=1
𝑤𝑖 − 𝑞

𝑧 ∈ {0, 1}𝑛 .

(1)

and we have an explicit bijection 𝑥 ↦ 𝑧 ∶= 𝟏 − 𝑥 between the solutions of the two problems.
Furthermore, we consider a unidimensional ordering of the items and enforce compactness: we ensure

that selected elements remain close to one another within this sequence, thereby preserving a degree of
structural coherence in the solution. The compactness of the solution is achieved in Santini & Malaguti
(2024) by enforcing a compactness constraint added to (mKP): for a given integer Δ ∈ ℕ, the distance
|𝑖 − 𝑗| separating two consecutive selected objects 𝑖, 𝑗 must not exceed Δ. For example, with Δ = 2, this
constraint is not verified by items 1 and 4 on FIGURE 1; adding item 2 yields the compact selection proposed
on FIGURE 2.

1 4 5 7

3 > Δ 1 ≤ Δ 2 ≤ Δ

FIGURE 1: a non-compact selection with Δ = 2
and 𝑛 = 7.

1 2 4 5 7

1 ≤ Δ 2 ≤ Δ 1 ≤ Δ 2 ≤ Δ

FIGURE 2: a compact selection with Δ = 2 and
𝑛 = 7.

This constraint can be modeled by requiring that, for any pair of indices 𝑖 and 𝑗 distant enough, if both
items 𝑖 and 𝑗 are selected, then at least one item between them must also be included in the selection. As-
suming without loss of generality that 𝑗 > 𝑖, this condition can be expressed in two ways: with a linear or a
quadratic inequality

𝑥𝑖 + 𝑥𝑗 − 1 ≤
𝑗−1
∑

𝑘=𝑖+1
𝑥𝑘 (2a) 𝑥𝑖𝑥𝑗 ≤

𝑗−1
∑

𝑘=𝑖+1
𝑥𝑘. (2b)

Existing work Santini & Malaguti (2024); Cürebal et al. (2024) about compactness enfore it by adding
the constraint (2a), or a strengthened form of (2a), to the mixed-integer formulation (mKPC). Thus, San-
tini & Malaguti (2024) studies the following linear binary formulation of the min-knapsack problem with
compactness constraints:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

minimize 𝑐⊤𝑥
subject to 𝑤⊤𝑥 ≥ 𝑞

∀𝑖, 𝑗 ∈ [[𝑛]] with 𝑗 − 𝑖 > Δ,
⌊

𝑗 − 𝑖 − 1
Δ

⌋

(

𝑥𝑖 + 𝑥𝑗 − 1
)

≤
𝑗−1
∑

𝑘=𝑖+1
𝑥𝑘 (★)

𝑥 ∈ {0, 1}𝑛

(mKPC)

The constraints (★) ensure that for all 𝑖, 𝑗 ∈ [[𝑛]], if items 𝑖 and 𝑗 are selected and are sufficiently far apart,
then at least ⌊(𝑗 − 𝑖 − 1)∕Δ⌋ items between 𝑖 and 𝑗 must also be selected. We denote by (mKPC)LP its linear
relaxation, replacing the constraint 𝑥 ∈ {0, 1}𝑛 by 𝑥 ∈ [0, 1]𝑛.

2

As a variant of the knapsack problem, (mKPC) is inherently 𝒩𝒫 -hard; it is moreover significally more
challenging to solve than the classical version. Indeed, while the classical knapsack problem is often rela-
tively easy to solve in practice, to the point that it is often considered one of the easiest 𝒩𝒫 -hard problems
Pisinger (2005), the addition of compactness constraints (★) significantly increases computational complex-
ity. Moreover, problem difficulty varies considerably depending on instance characteristics, with certain
instances proving substantially harder to solve using off-the-shelf solvers, due to the fact that the linear re-
laxation (mKPC)LP often yields a large number of fractional variables with values close to 1∕2, resulting in
significantly more branching during the exploration of the branch & bound tree, as observed by Santini &
Malaguti (2024). Then Cürebal et al. (2024) proposes to combine a heuristic with the integer programming
approach.

In this work, we investigate an alternative approach: exploiting the quadratic formulation of the compact-
ness inequality (2b), we consider the min-knapsack with compactness as a binary problem with quadratic
constraints and propose strong relaxations based on semidefinite programming, aiming both to derive tight
bounds and to guide the development of effective heuristics. In particular, we seek to avoid the issue of poor
fractionality in the computed relaxed solution, which poses a significant challenge for exact methods. We
provide more details on our approach, our results, and the outline of the paper, in section 1.3. Before this, in
the next section, we give an example of how this compactness appears in an application.
1.2. Example of application

The min-knapsack with compactness captures applications in statistics, particularly in the detection of
regime changes in time series. In this section, we briefly present this application, refering to Santini &
Malaguti (2024); Pisinger (2005); Aminikhanghahi & Cook (2017) for more details.

Given a sequence of measurements collected at regular intervals, describing the behaviour of a system,
the aim of change point detection is to identify abrupt breaks in a time series, signaling significant changes
in the dynamics or distribution of the data as a result of external events. Change detection in time series has
numerous practical applications Aminikhanghahi & Cook (2017). In climatology, it can be used to identify
the effects of climate change. In medicine, continuous monitoring of a patient’s state of health relies on real-
time analysis of physiological variables (such as heart rate, electroencephalogram), see e.g. Aminikhanghahi
& Cook (2017) the recent survey on time series and their applications.

For detecting variance variations in Gaussian time series, Cappello & Padilla (2025) proposed an iterative
procedure that identifies a change point at each step. However, assigning a single point in time to each change
can be difficult to interpret because of the uncertainty on precise moment at which the variation occurs; see
e.g. FIGURE 3.

FIGURE 3: a time serie and its possible changes
in variance.

FIGURE 4: probabilities associated to each point
of being the first change point of the time serie.

3

To overcome this problem, the method builds a discrete probability distribution over the time points,
associating with each one a probability that it constitutes a point of change. FIGURE 4 displays an example:
the bars on the graph represent the probabilities assigned to each instant in the time series. The method then
identifies a subset whose associated probabilities sum to at least 𝑞, while minimizing the number of selected
elements. To account for varying measurement accuracy, each point 𝑖 is assigned a cost 𝑐𝑖 ≥ 0 reflecting its
inaccuracy, and we aim to minimize the total imprecision. This leads to a standard min-knapsack formulation.
However, solving the problem as (mKP) may result in sets that mix multiple change points, as illustrated in
FIGURE 5. Since each selected set is meant to capture a single change point, the selection should ideally be
compact. This motivates the compactness constraint in (mKPC), whose effect is visualized in FIGURE 6.

FIGURE 5: selected items for the (mKP), build-
ing a non-compact 0.75-credible set, with a com-
pactness parameter Δ = 1.

FIGURE 6: selected items for the (mKPC), and
the corresponding compact 0.75-credible set,
with a compactness parameter Δ = 1.

1.3. Contributions and outline
In this paper, we introduce a semidefinite reformulation of the min-knapsack problem with compactness,

leading to two distinct semidefinite relaxations: the first relaxation explicitly incorporates the compactness
constraint within the formulation, building on the approach on Santini & Malaguti (2024), while the second
indirectly promotes compactness through a penalized objective function. To improve the quality of these
relaxations, we investigate various strengthening techniques and propose two families of valid inequalities:
one leveraging semidefinite programming principles and the other exploiting the combinatorial structure of
the problem. In particular, we adapt key concepts from classical knapsack literature to our framework and
introduce an algorithm capable of generating effective cutting planes in pseudo-polynomial time. We then
analyze the computational efficiency and solution quality of these approaches, with a particular focus on the
challenging instances of Santini & Malaguti (2024). Additionally, we demonstrate how these elements can
be combined to design an efficient heuristic that produces high-quality solutions in terms of fractionality,
while allowing for a tunable trade-off between accuracy of the solution set and compactness.

This paper is organized as follows: in section 2, we present our semidefinite formulations of the min-
knapsack problem with compactness constraints and its penalized variant. Section 3 details strengthening
techniques, involving valid inequalities from the theory of semidefinite programming and a separation pro-
cedure that rely on the combinatorial properties of the problem. Finally, section 4 reports the results of our
numerical experiments, and we conclude with discussions on future research directions. Two appendices
complement the paper, for additional information, including a counter-example on a curious observation in
section 2.

4

2. Modeling as a semidefinite program

In this section, we develop our semidefinite programming approach for the min-knapsack problem with
compactness constraints. We first write the exact SDP reformulation by lifting the binary variables to a rank
one matrix variable, thereby establishing a formal equivalence with the original formulation. We then present
a first semidefinite relaxation obtained from this reformulation, that we compare to the linear relaxation
(mKPC)LP. Finally, we propose a penalized SDP formulation that integrates the compactness requirement
directly into the objective function, offering a flexible trade-off between minimizing over the sum of the costs
and ensuring a structural compactness.
2.1. Equivalent SDP reformulations

In the context of a {0, 1}-formulation of the min-knapsack problem with compactness constraint, we
apply the usual "recipe" Poljak et al. (1995) and get a semidefinite reformulation by substituting a matrix
variable 𝐗 = 𝑥𝑥⊤ into the original problem. For the sake of completness, we formalize the result and include
a direct proof of the equivalence between the two formulation. We will note 𝕊𝑛 the set of symmetric matrix
of size 𝑛 × 𝑛 and 𝕊𝑛

+ the set of symmetric positive semidefinite matrices of size 𝑛 × 𝑛.

Proposition 1. Let  ⊆ 𝕊𝑛 denote the set of all symmetric matrices 𝐗 that verify the linear inequalities

 =

{

𝐗 ∈ 𝕊𝑛
|

|

|

|

|

|

𝑤⊤ diag(𝐗) ≥ 𝑞 and ∀𝑖, 𝑗 ∈ [[𝑛]], 𝑗 − 𝑖 > Δ,
⌊

𝑗 − 𝑖 − 1
Δ

⌋

𝐗𝑖𝑗 ≤
𝑗−1
∑

𝑘=𝑖+1
𝐗𝑘𝑘

}

(3)

where diag ∶ 𝕊𝑛 → ℝ𝑛 is the operator taking a matrix 𝐗 and associates the vector of its diagonal entries.
Then both (mKPC) and

min
𝐗∈𝕊𝑛

+

{

𝑐⊤ diag (𝐗) |
|

𝐗 ∈  ∩ {0, 1}𝑛×𝑛 , rank (𝐗) = 1
}

(4)

yield the same optimal solution. More precisely, if 𝑥∗ is an optimal solution of (mKPC), then𝐗∗ = 𝑥∗𝑥∗⊤
is an optimal solution of (4); conversely, if 𝐗∗ is an optimal solution of (4), then 𝑥∗ = diag (𝐗∗) is an
optimal solution of (mKPC).

Proof. Let 𝑥∗ be an optimal solution of (mKPC). Then we set 𝐗 = 𝑥∗𝑥∗⊤, and since 𝑥∗ is a {0, 1}-vector,
we have 𝐗𝑘𝑘 =

(

𝑥∗𝑘
)2 = 𝑥∗𝑘 for all 𝑘 ∈ [[𝑛]]. As a consequence:

𝑛
∑

𝑖=1
𝑤𝑖𝐗𝑖𝑖 =

𝑛
∑

𝑖=1
𝑤𝑖

(

𝑥∗𝑖
)2 =

𝑛
∑

𝑖=1
𝑤𝑖𝑥

∗
𝑖 ≥ 𝑞.

Moreover, if 𝑖, 𝑗 ∈ [[𝑛]] are such that 𝑗 − 𝑖 > Δ, two cases occur: either at least one of the variables is zero,
and then 𝐗𝑖𝑗 = 𝑥∗𝑖 𝑥

∗
𝑗 = 0 so that the inequality

⌊

𝑗 − 𝑖 − 1
Δ

⌋

𝐗𝑖𝑗 = 0 ≤
𝑗−1
∑

𝑘=𝑖+1
𝐗𝑘𝑘

5

is indeed verified; either 𝑥∗𝑖 = 𝑥∗𝑗 = 1 and we then have 𝐗𝑖𝑗 = 1 and 𝑥∗𝑖 + 𝑥∗𝑗 − 1 = 1, leading to
⌊

𝑗 − 𝑖 − 1
Δ

⌋

𝐗𝑖𝑗 =
⌊

𝑗 − 𝑖 − 1
Δ

⌋

(

𝑥∗𝑖 + 𝑥∗𝑗 − 1
)

≤
𝑗−1
∑

𝑘=𝑖+1
𝑥∗𝑘 =

𝑗−1
∑

𝑘=𝑖+1
𝐗𝑘𝑘

where the inequality comes from the fact that 𝑥∗ is a solution of (mKPC). Thus 𝐗 ∈  , has rank one and
its coefficients in {0, 1}, so 𝐗 is a solution of (4), with the same objective value 𝑐⊤ diag (𝐗) = 𝑐⊤𝑥∗. In
particular, the optimal value of (4) is less than the optimal value of the (mKPC).

Conversely, if 𝐗∗ is an optimal solution of (4), then 𝐗∗ is a positive semidefinite matrix of rank one with
coefficients in {0, 1}, so there is a vector 𝑥 ∈ {0, 1}𝑛 such that 𝐗∗ = 𝑥𝑥⊤. Applying the fact that for all
𝑘 ∈ [[𝑛]], 𝐗∗

𝑘𝑘 = 𝑥2𝑘 = 𝑥𝑘, we have

𝑤⊤𝑥 =
𝑛
∑

𝑖=1
𝑤𝑖𝑥𝑘 =

𝑛
∑

𝑖=1
𝑤𝑖𝐗∗

𝑘𝑘 ≥ 𝑞

and for all 𝑖, 𝑗 ∈ [[𝑛]], we have (1 − 𝑥𝑖
) (

1 − 𝑥𝑗
)

≥ 0, which gives us the inequality 𝑥𝑖𝑥𝑗 ≥ 𝑥𝑖 + 𝑥𝑗 − 1, so if
𝑗 − 𝑖 > Δ:

⌊

𝑗 − 𝑖 − 1
Δ

⌋

(

𝑥𝑖 + 𝑥𝑗 − 1
)

≤
⌊

𝑗 − 𝑖 − 1
Δ

⌋

𝑥𝑖𝑥𝑗
⏟⏟⏟
=𝐗∗

𝑖𝑗

≤
𝑗−1
∑

𝑘=𝑖+1
𝑥𝑘.

So 𝑥 is indeed a solution of the (mKPC) with value 𝑐⊤𝑥 = 𝑤1𝐗∗
11 + ⋯ + 𝑤𝑛𝐗∗

𝑛𝑛, giving us the equality
between the value of (4) and the optimal value of (mKPC), and we have the equality 𝐗∗ = 𝑥∗𝑥∗⊤ and
diag (𝐗∗) = 𝑥∗.

This equivalent reformulation of (mKPC) shows non-convexity in both the rank constraint and the {0, 1}
coefficient constraints. We use a classical result about {0, 1} positive semidefinite matrices, recalled in Ap-
pendix A.

Proposition 2. Let  ⊆ 𝕊𝑛 be the polytope defined at (3) in Proposition 1. Then both (mKPC) and

min
𝐗∈𝕊𝑛

+

{

𝑐⊤ diag (𝐗)
|

|

|

|

|

𝐗 ∈  ,
(

1 diag(𝐗)⊤
diag(𝐗) 𝐗

)

⪰ 0 , rank (𝐗) = 1

}

(5)

yield equivalent optimal solution: 𝑥∗ = diag (𝐗∗) and 𝐗∗ = 𝑥∗𝑥∗⊤.

Proof. By Proposition 1, if 𝑥∗ is an optimal solution of (mKPC), then 𝐗 = 𝑥∗𝑥∗⊤ is an optimal solution of
(4), and since 𝑥∗ is a {0, 1}-vector, we have

(

1 diag (𝐗)⊤
diag (𝐗)⊤ 𝐗

)

=

⎛

⎜

⎜

⎜

⎜

⎝

1 𝑥∗1
2 ⋯ 𝑥∗𝑛

2

𝑥∗1
2

⋮

𝑥∗𝑛
2

𝐗

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

1 𝑥∗1 ⋯ 𝑥∗𝑛
𝑥∗1
⋮
𝑥∗𝑛

𝑥∗𝑥∗⊤
⎞

⎟

⎟

⎟

⎟

⎠

=
(

1
𝑥∗

)(

1
𝑥∗

)⊤
⪰ 0

6

hence 𝐗 is indeed a solution of (5). In particular, Proposition 1 states that 𝐗 is an optimal solution of (4).
Since (4) and (5) both have the same objective function, we have Opt (5) ≤ Opt (4).

Conversely, if 𝐗∗ is an optimal solution of (5), then Theorem 1 (see Appendix A) ensures that 𝐗∗ is a
{0, 1} matrix with rank (𝐗∗) = 1, thus 𝐗∗ is a solution of (4). Hence Opt (4) ≤ Opt (5), which implies that
problems (4) and (5) have the same objective value, and 𝐗∗ is an optimal solution of (4). By Proposition 1,
𝑥 = diag (𝐗∗) is an optimal solution of the (mKPC).
2.2. A first SDP relaxation

The formulation given (5) allows us to build a first semidefinite relaxation, by dropping the non-convex
rank-one constraint, giving the following semidefinite relaxation:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

minimize 𝑐⊤ diag (𝐗)
subject to 𝑤⊤ diag (𝐗) ≥ 𝑞

∀𝑖, 𝑗 ∈ [[𝑛]] with 𝑗 − 𝑖 > Δ,
⌊

𝑗 − 𝑖 − 1
Δ

⌋

𝐗𝑖𝑗 ≤
𝑗−1
∑

𝑘=𝑖+1
𝐗𝑘𝑘

(

1 diag (𝐗)⊤
diag (𝐗) 𝐗

)

⪰ 0.

(mKPC)SDP

However, we observed that this first naive semidefinite relaxation does not provide in general better results
than the linear relaxation (mKPC)LP. Let us illustrate this on one instance. FIGURES 7 and 8 show the profile
of the selected objects for the linear and the naive semidefinite relaxation respectively. The bar corresponding
to object 𝑖 ∈ [[𝑛]] is filled in proportion to the value of 𝑥∗𝑖 (or 𝐗∗

𝑖𝑖), the optimal solution returned by the model.

FIGURE 7: selected items for the linear relaxation
of (mKPC).

FIGURE 8: selected items for the naïve semidefi-
nite relaxation (mKPC)SDP.

Let’s take a closer look at the solutions. For example, looking at 𝐗∗, the optimal solution of (mKPC)SDPand 𝑥∗ the optimal solution for the linear relaxation, between indexes 122 and 126 (around the location of
the high peak):

𝐗∗
122−126 =

⎛

⎜

⎜

⎜

⎜

⎝

0.9726 0.9751 0.9773 0.9726 0.9726
0.9751 0.9821 0.9847 0.9821 0.9821
0.9773 0.9847 0.9912 0.9912 0.9912
0.9726 0.9821 0.9912 1 1
0.9726 0.9821 0.9912 1 1

⎞

⎟

⎟

⎟

⎟

⎠

0.9726
0.9821

0.9912
1

1

𝑥∗122−126 =

⎛

⎜

⎜

⎜

⎜

⎝

0.9726
0.9821
0.9912

1
1

⎞

⎟

⎟

⎟

⎟

⎠

. (6)

7

This apparent equality between diag (𝐗∗) and 𝑥∗ can in fact be observed for all the other coordinates. More-
over, it seems that the coefficients off-diagonal 𝐗∗

𝑖𝑗 are, within numerical error, derived from the product
𝑥∗𝑖 𝑥

∗
𝑗 : indeed, for indexes 𝑖 ∈ [[𝑛]] such that 𝑥∗𝑖 = 1, we observe that 𝐗∗

𝑖𝑗 = 𝑥∗𝑗 for all 𝑗 ∈ [[𝑛]]; and whenever
𝑥∗𝑖 = 0, we have 𝐗∗

𝑖𝑗 = 0 for any 𝑗 ∈ [[𝑛]]. This phenomenon can be observed in a very large number of
instances and leads us to formulate the following property:

Property (ROAD). We will say that an instance of (mKPC) has the Rank-One with Adjusted Diagonal
(ROAD) property if the matrix

𝐗 = 𝑥∗𝑥∗⊤ + Diag
(

𝑥∗ − 𝑥∗2
)

=

⎛

⎜

⎜

⎜

⎝

𝑥∗1

𝑥∗𝑛

𝑥∗
𝑖 𝑥

∗
𝑗

𝑥∗
𝑖 𝑥

∗
𝑗

⎞

⎟

⎟

⎟

⎠

(ROAD)

is feasible for the (naive) semidefinite relaxation (mKPC)SDP, where 𝑥∗ is an optimal solution of
(mKPC)LP and where Diag ∶ ℝ𝑛 → 𝕊𝑛 is the operator associating to a vector 𝑢 ∈ ℝ𝑛 a matrix 𝐔 ∈ 𝕊𝑛

with 𝑢 on the diagonal, and zero entries elsewhere.

Empirical observations across a diverse range of instances suggest that most of them satisfy the ROAD
property. However, we can construct counterexamples where there is no clear relationship between the opti-
mal solution of the linear relaxation and that of the semidefinite relaxation (see Appendix B).

Furthermore, even when considering an instance that satisfies the ROAD property, the matrix 𝐗 =
𝑥∗𝑥∗⊤ + Diag(𝑥∗ − 𝑥∗2) is feasible but not necessarily optimal for (mKPC)SDP. For instance, in the ex-
ample presented in (6), the optimal solution 𝐗∗ of (mKPC)SDP does not satisfy (ROAD). Nevertheless, if
we focus only on the objective values of the problems, we observe the following property that we leave as a
conjecture:

Conjecture 1. Opt
(

(mKPC)SDP
)

≤ Opt
(

(mKPC)LP
)

≤ Opt (mKPC).

In particular, for every instance that has the ROAD property, we can use the optimal solution 𝑥∗ of the
linear relaxation of (mKPC) to build a solution 𝐗 with the same objective value; hence, the optimal solution
of the naive semidefinite relaxation has a lower objective value. Thus, ROAD property implies Conjecture 1.
However, we do not know if Conjecture 1 holds in general.
2.3. Penalized SDP relaxation

The idea of a penalty-based approach is to be able to construct good solutions by optimizing over a
"score" of a solution that takes into account both accuracy and compactness, instead of minimizing the sum
of the costs. In contrast, our approach introduces a penalty mechanism based on pairs of elements: it rewards
configurations where the space between two indexes of a selected pair (𝑖, 𝑗) ∈ 𝑆2 is sufficiently filled by
intermediate items 𝑖 < 𝑘 < 𝑗 while penalizing those that do not satisfy this criterion.

Remark 1. Other penalty-based approaches have been proposed, notably in Cürebal et al. (2024), where
a penalty is applied directly to the objective function when certain items are not selected.

8

Hence, we introduce a parameter 𝜆 ∈ ℝ+ and change our objective function to deal with a balance
between compactness and accuracy, and we come up with the following model:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

minimize 𝑐⊤ diag (𝐗) +
∑

1≤𝑖≤𝑗≤𝑛
𝑗−𝑖>Δ

𝜆

(

⌊

𝑗 − 𝑖 − 1
Δ

⌋

𝐗𝑖𝑗 −
𝑗−1
∑

𝑘=𝑖+1
𝐗𝑘𝑘

)

subject to 𝑤⊤ diag (𝐗) ≥ 𝑞
(

1 diag(𝐗)⊤
diag(𝐗) 𝐗

)

⪰ 0.

(PmKPC)

Remark 2 (Alternative penalization approaches).
∙ The model (PmKPC) does not correspond to the standard Lagrangian penalization and instead relies

on an approach that rewards situations where the compactness constraints are verified. Indeed, if we
consider the model obtained from building the Lagrangian penalization of (mKPC)SDP, we would get

𝜑𝜆 ∶ 𝐗 ⟼ 𝑐⊤ diag (𝐗) +
∑

1≤𝑖≤𝑗≤𝑛
𝑗−𝑖>Δ

𝜆max

(

0,
⌊

𝑗 − 𝑖 − 1
Δ

⌋

𝐗𝑖𝑗 −
𝑗−1
∑

𝑘=𝑖+1
𝐗𝑘𝑘

)

.

Any 𝑥 ∈ [0, 1]𝑛 checking the knapsack constraint 𝑤⊤𝑥 ≥ 𝑞 would yield a solution of the Lagrangian
penalization model: applying the arguments from the beginning of Appendix B, the semidefinite positive
matrix 𝐗 ∶= 𝑥𝑥⊤ + Diag(𝑥 − 𝑥2) would check the knapsack constraint and the conic constraint. In
particular, for the majority of instances that check the ROAD property, writing 𝑥∗ for the solution of
(mKPC)LP, we get that 𝐗 ∶= 𝑥∗𝑥∗⊤ + Diag(𝑥∗ − 𝑥∗2) is a solution of the Lagrangian penalization
model with the same objective value 𝜑𝜆 (𝐗) = 𝑐⊤𝑥∗. This is why we propose a model where verified
compactness inequalities lead to a reward in the objective function thus avoids the problematic situations
we encountered in the case of the naive semidefinite relaxation.

∙ Another possible approach to penalization is to introduce individual penalty parameters 𝜆𝑖𝑗 for every pair
𝑖, 𝑗 ∈ [[𝑛]] in (PmKPC). This extended parameterization could offer even more flexibility in tuning the
objective function, allowing for more adjustments in response to the specific properties of the instances
and the particular requirements of the problem. Here we prefer to stick with the simplest case with only
one hyperparameter, to single out its role in the quality of obtained solutions (c.f. FIGURES 13a to 13f in
section 4).

To compare solution produced by different models (MIP, LP, SDP, penalized), we introduce metrics that
assess solution quality independently of the objective function. These forthcoming metrics (7) to (9) capture
the key properties required to address the original statistical problem, namely accuracy and compactness.
Note that the normalization included in (7), (8), and (9) ensures that all three indicators take values in the
range [0, 1], allowing for comparisons across instances of varying sizes.

Let 𝑥∗ ∈ [0, 1]𝑛 be a solution vector obtained from any of the models under consideration for a given
instance. In particular, by Proposition 2, the solution vector produced by a semidefinite model can be directly
extracted from the diagonal of the optimal solution matrix, i.e., 𝑥∗ = diag (𝐗∗). To determine the set of
selected items, we apply a simple rounding rule: an item 𝑖 is considered selected if and only if 𝑥∗𝑖 ≥ 1∕2.

9

We then introduce the imprecision indicator as

𝐢𝐦𝐩
(

𝑥∗
)

∶= 𝑐⊤𝑥∗

𝑐⊤𝟏
(7)

where 𝑐 denotes the cost vector of the instance. This indicator corresponds to a normalized version of the
original objective function of (mKPC): the aim of the original problem is to minimize the sum of the costs,
which results in minimizing the imprecision of the solution.

Next, we consider a compactness indicator to evaluate the spatial distribution of the selected items: let
𝑆 ⊆ [[𝑛]] be the set of selected items for a given instance; the compactness indicator is defined as

𝐜𝐨𝐦𝐩 (𝑆) ∶= 1
𝑛
max
𝑖,𝑗∈𝑆

{𝑗 − 𝑖 − 1 | 𝑖, 𝑗 consecutive} (8)

where 𝑛 denotes the total number of items in the instance. Finally, to quantify this ambiguity and evaluate
how close a solution is to an integer vector, we introduce an additional metric: let 𝑥∗ be the solution vector
of a model, the fractionality indicator is then defined as the normalized distance between 𝑥∗ and its closest
{0, 1}-vector

𝐟𝐫𝐚𝐜
(

𝑥∗
)

∶= 2
√

𝑛

‖

‖

‖

‖

𝑥∗ −
⌊

𝑥∗ + 1
2
⋅ 𝟏
⌋

‖

‖

‖

‖2
(9)

where the floor function is applied coordinate-wise to 𝑥∗ + 1
2𝟏. Since the considered formulations relax the

integrality constraints on the solution vector, this fractionality indicator provides a relevant measure of solu-
tion quality and can be used to compare different models. Furthermore, as described in Santini & Malaguti
(2024), (mKPC) has instances that tend to produce relaxed solutions with many variables close to 1

2 , resulting
in more branching when exploring the branch & bound tree, making (9) even more relevant to evaluate the
fractionnality of a solution, since 𝐟𝐫𝐚𝐜(𝑥) = 1 if and only if 𝑥 = 1

2𝟏.
Having a semidefinite formulation of the min-knapsack problem with compactness constraints and pro-

posed a penalized version, we now turn our attention to several techniques to strenghen our SDP relaxations.
In the following section, we introduce a series of valid inequalities and separation techniques aimed at rein-
forcing the product structure inherent to the binary formulation. These developments lead to tighter bounds
and improved computational performance, as detailed in the subsequent numerical experiments.

3. Strengthening the semidefinite relaxation

As discussed in section 2.2, (mKPC)SDP often fails to provide tighter bounds than its linear counterpart. In
this section, we therefore introduce a series of valid inequalities, drawn from both semidefinite programming
theory and combinatorial optimization, to strengthen the relaxation and enhance bound quality. We will
then investigate how to separate a given fractional solution using the knapsack structure, and provide the
theoretical justification for our approach.
3.1. Valid inequalities

We first recall that the proposed semidefinite reformulation (5) relies on the linearization of all quadratic
terms from the original problem (mKPC) by introducing a variable 𝐗𝑖𝑗 for each product 𝑥𝑖𝑥𝑗 , where 𝑖, 𝑗
range over [[𝑛]]. However, in the relaxed versions (mKPC)SDP and (PmKPC), where the non-convex rank-
one constraint has been dropped, the variables 𝐗𝑖𝑗 may no longer behave as true product terms.

Inspired by techniques such as the Sherali-Adams cuts Mathieu & Sinclair (2009), we introduce valid
inequalities designed to reinforce this product structure. These inequalities can be seamlessly integrated into

10

both the standard semidefinite model and the penalty-based formulation, ensuring their applicability across
different modeling approaches.

Let 𝐼, 𝐽 be disjoint subsets of [[𝑛]] with |𝐼 ∪ 𝐽 | = 2. Starting from the original {0, 1} formulation of the
(mKPC), we have that all the possible following inequalities

∏

𝑖∈𝐼
𝑥𝑖 ⋅

∏

𝑗∈𝐽

(

1 − 𝑥𝑗
)

≥ 0

are quadratic valid inequalities for the binary setup. Since 𝑥 ∈ {0, 1}𝑛, and given the substitution 𝐗 = 𝑥𝑥⊤
used to construct the semidefinite formulation, we can identify the product terms as follows: for any 𝑖, 𝑗 ∈
[[𝑛]], we associate 𝑥2𝑖 with 𝐗𝑖𝑖 (resp. 𝑥2𝑗 with 𝐗𝑗𝑗) and 𝑥𝑖𝑥𝑗 with 𝐗𝑖𝑗 . This transformation lifts the inequalities
into the matrix space, yielding the following set of valid inequalities for the semidefinite model:

𝐗𝑖𝑗 ≥ 0 𝐗𝑖𝑖 ≥ 𝐗𝑖𝑗 𝐗𝑖𝑗 ≥ 𝐗𝑖𝑖 + 𝐗𝑗𝑗 − 1 (10)

for all 𝑖, 𝑗 ∈ [[𝑛]]. Moreover, for all 𝑖, 𝑗, 𝑘 ∈ [[𝑛]], the binary structure implies the following inequalities
(𝑥𝑘 − 𝑥𝑖)(𝑥𝑘 − 𝑥𝑗) ≥ 0 and (1 − 𝑥𝑘 − 𝑥𝑖)(1 − 𝑥𝑘 − 𝑥𝑗) ≥ 0 which gives through the same lifting process,
additional valid inequalities for the semidefinite setting:

𝐗𝑘𝑘 + 𝐗𝑖𝑗 ≥ 𝐗𝑖𝑘 + 𝐗𝑗𝑘 𝐗𝑖𝑘 + 𝐗𝑗𝑘 + 𝐗𝑖𝑗 ≥ 𝐗𝑖𝑖 + 𝐗𝑗𝑗 + 𝐗𝑘𝑘 − 1. (11)

Furthermore, for any 𝑗 ∈ [[𝑛]] multiplying the knapsack constraint 𝑤⊤𝑥 ≥ 𝑞 by 𝑥𝑗 and 1 − 𝑥𝑗 gives
𝑛
∑

𝑖=1
𝑤𝑖𝐗𝑖𝑗 ≥ 𝑞𝐗𝑗𝑗 𝑞

(

𝐗𝑗𝑗 − 1
)

+
𝑛
∑

𝑖=1
𝑤𝑖𝐗𝑖𝑖 ≥

𝑛
∑

𝑖=1
𝑤𝑖𝐗𝑖𝑗 . (12)

Moreover, linerizing the Cauchy-Schwarz inequality |tr (Diag(𝑤)𝐗)|2 ≤ ‖Diag (𝑤)‖2 ‖𝐗‖2 yields another
quadratic valid inequality:

(𝑛
∑

𝑖=1
𝑤2

𝑖

)(

∑

1≤𝑖,𝑗≤𝑛
𝐗𝑖𝑗

)

≥
𝑛
∑

𝑖=1
𝑤2

𝑖𝐗𝑖𝑖 + 2
∑

1≤𝑖<𝑗≤𝑛
𝑤𝑖𝑤𝑗𝐗𝑖𝑗 . (13)

Overall, by incorporating inequalities (10) to (13), to our semidefinite models, we get the strenghtened
semidefinite relaxation (mKPC)+SDP and its penalized version (PmKPC)+.
3.2. Maximal insufficient subset cuts

To strengthen again our semidefinite model, we investigate a class of valid inequalities derived from the
classical cover inequalities commonly used in knapsack problems. In our min-knapsack setting, the standard
definition of cover should be inverted, motivating the definition of insufficient subsets: 𝑆 ⊆ [[𝑛]] is said to be
insufficient if ∑𝑖∈𝑆 𝑤𝑖 < 𝑞, that is to say that 𝑆 is not a valid selection of items for the knapsack constraint.

In knapsack litterature, a cover set is a minimal set of items whose total weight exceeds the capacity,
requiring at least one item to be removed. In our min-knapsack setting, this logic is reversed: we seek the
largest possible subsets that remain insufficient, ensuring that at least one additional item must be included
to satisfy the constraint. This motivates the following definition:

11

Definition 1 (Maximal insufficient subset). If 𝑆 ⊆ [[𝑛]] is an insufficient subset, we call 𝑆 maximal if:

∀𝑗 ∉ 𝑆, 𝑤𝑗 +
∑

𝑖∈𝑆
𝑤𝑖 ≥ 𝑞.

In words, 𝑆 is an insufficient subset that can be completed by any other item to verify the knapsack
constraint.

Now, if 𝑆 is such a maximal insufficient subset, we call maximal insufficient subset cut (MISC) associated
to 𝑆 the following inequality:

∑

𝑖∈[[𝑛]]⧵𝑆
𝑥𝑖 ≥ 1. (MISC)

This inequality is valid for the classical knapsack problem. The bijection between the min-knapsack problem
and the classical maximization knapsack (1) also links the maximal insufficient subsets 𝑆 in the min-setting
and the minimal covers 𝐶 of the complementary problem via 𝑆 ↦ 𝐶 ∶= [[𝑛]] ⧵ 𝑆. This fact allows us to
recover all the theory from the classical knapsack theory and bring it into our setting. In particular, this tells
us that any (MISC) inequality is valid for (mKP) since, by definition, this inequality comes from a maximal
insufficient subset 𝑆, meaning that at least one item outside 𝑆 must be selected to satisfy the knapsack
constraint; and the (MISC) formulation explicitly enforces this requirement.

Furthermore, since this derivation relies only on the knapsack constraint itself, without assuming any
specific structure in the distribution of selected items, (MISC) remains valid for other mixed-integer models
incorporating the constraint 𝑤⊤𝑥 ≥ 𝑞. In particular, it applies to the semidefinite models we developed to
address the change-point detection problem, including the "naive" relaxation (mKPC)SDP and its strengthened
version (mKPC)+SDP, as well as the penalty-based formulation (PmKPC) and its strengthened counterpart
(PmKPC)+.

In particular, we will know focus on the semidefinite framework where the (MISC) is formulated as:
∑

𝑖∈[[𝑛]]⧵𝑆
𝐗𝑖𝑖 ≥ 1. (MISC)SDP

We can now show how to integrate those maximal insufficent subset cuts in a cutting plane scheme: given 𝐗∗

a fractional solution of one of our semidefinite formulation, we want to find 𝑆 ⊆ [[𝑛]] a maximal insufficient
subset that yield an inequality (MISC)SDP that separates 𝐗∗, or certify that no such subset exists.

To adress this problem, we note that 𝑆 ⊆ [[𝑛]] is a maximal insufficient subset that yields a cut (MISC)SDPseparating 𝐗∗ if and only if 𝑆 is such that
∑

𝑖∈[[𝑛]]⧵𝑆
𝐗∗
𝑖𝑖 < 1 or, equivalently,

𝑛
∑

𝑖=1

(

1 − 1𝑆 (𝑖)
)

𝐗∗
𝑖𝑖 < 1.

Introducing binary variables 𝛼𝑖 for 𝑖 ∈ [[𝑛]] with value 1 if and only if 𝑖 ∈ 𝑆, we build the following separation
problem:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

minimize
𝑛
∑

𝑖=1

(

1 − 𝛼𝑖
)

𝐗∗
𝑖𝑖

subject to
𝑛
∑

𝑖=1
𝑤𝑖𝛼𝑖 ≤ 𝑞 − 𝜀

𝛼 ∈ {0, 1}𝑛.

(14)

12

where 𝜀 > 0 is small enough to make sure that the feasible solutions of the integer problems gives exactly
the set of all insufficient subsets:

{

𝛼 ∈ ℝ𝑛 |

|

|

𝑤⊤𝛼 < 𝑞
}

∩ {0, 1}𝑛 =
{

𝛼 ∈ ℝ𝑛 |

|

|

𝑤⊤𝛼 ≤ 𝑞 − 𝜀
}

∩ {0, 1}𝑛 .

With this formulation, (14) is a combinatorial problem that aim to give a insufficient subset yielding a
cut separating 𝐗∗, or decide whether such set exists. Indeed, if Opt (14) ≥ 1, then we know that there is
no insufficient subset, and in particular no maximal insufficient subset, that yield a separating (MISC)SDPinequality. In the other hand, if Opt (14) < 1, the optimal solution 𝛼∗ gives a set 𝑆 =

{

𝑖 such that 𝛼∗𝑖 = 1
}

such that 𝐗∗ violates (MISC)SDP.
Furthermore, rewritting the objective of (14) as a maximization problem, one can observe that it is pre-

cisely equivalent to a classical knapsack problem. Given that such problems are often considered "easy"
to solve optimally, the insufficient subset 𝑆 =

{

𝑖 such that 𝛼∗𝑖 = 1
} can therefore be computed in pseudo-

polynomial time Pisinger (2005). For further details and techniques related to knapsack problems, see, e.g.,
Hojny et al. (2020).

However, the solution set 𝑆 =
{

𝑖 such that 𝛼∗𝑖 = 1
} returned by (14) is not necessarly maximal. The

maximality of the subset could be ensured with additional "big 𝑀 constraints"

∀𝑗 ∈ [[𝑛]], 𝑀
(

1 − 𝛼𝑗
)

+𝑤𝑗 +
𝑛
∑

𝑖=1
𝑤𝑖𝛼𝑖 ≥ 𝑞

but adding such constraints would bring a lot of complexity to the separation problem, meaning that we would
lose our ability to compute 𝑆 =

{

𝑖 such that 𝛼∗𝑖 = 1
} easely. Instead, we will "correct" the returned set using

the following greedy algorithm:
Algorithm 1 greedy approach to correct 𝑆
𝑆 ←

{

𝑖 such that 𝛼∗𝑖 = 1
}

while
∑

𝑖∈𝑆

𝑤𝑖 < 𝑞 do

add to 𝑆 the lightest item from [[𝑛]] ⧵ 𝑆 ⊳ repeats until 𝑆 is no more insufficient
end while
remove the last item added to 𝑆
return 𝑆

Our motivation to rebuild maximality out of the output of (14) comes from the fact that we want to have
the tighter cut possible in order to leave behing the largest possible amount of fractionnal feasible points.
Using the bijection between the min-knapsack problem and its complementary described earlier, we can
state the following proposition:

13

Proposition 3 (Adapted from the classical knapsack litterature, see e.g. Proposition 7.1 in Conforti et
al. (2014)). Let 𝑆 be an insufficient subset for (mKP), then the insufficient subset inequality

∑

𝑖∈[[𝑛]]⧵𝑆
𝑥𝑖 ≥ 1

is facet-defining for conv ()∩
{

𝑥 ∈ ℝ𝑛
|∀𝑖 ∈ 𝑆, 𝑥𝑖 = 1

}

, where  denotes the set of all integer feasible
points of (mKP).

Hence, the maximality of an insufficient subset is a relevant property to ask for to get the tightest inequality
possible. We now have the following result:

Proposition 4. Let 𝛼∗ be an optimal solution of (14), and 𝑆 the corrected set returned by Algorithm 1.

(i) The set 𝑆 is a maximal insufficient subset.

(ii) If Opt (14) < 1, then the (MISC)SDP associated to 𝑆 separates 𝐗∗.

(iii) Otherwise, if Opt (14) ≥ 1, then there exists no maximal insufficient maximal subset 𝑆 such that
(MISC)SDP associated to 𝑆 separates 𝐗∗.

Proof. The point (iii) has already been discussed after the presentation of the separation problem (14). Let
𝑆 ∶=

{

𝑖 such that 𝛼∗𝑖 = 1
} be the input set of Algorithm 1. First, notice that Algorithm 1 runs in a finite

number of steps since 𝑤1 +⋯ +𝑤𝑛 ≥ 𝑞: we therefore cannot add items to 𝑆 indefinitely in such a way that
the resulting set 𝑆 remains insufficient. By construction, at each iteration of the while loop, an item is added
to 𝑆. Let 𝐢𝑘 be the item we added at iteration 𝑘, and let 𝑚 be the total number of iterations. The returned set
is then 𝑆 = 𝑆 ⊔

{

𝐢1,… , 𝐢𝑚−1
} and it is obviously insufficient, otherwise the loop would have stopped earlier.

Moreover, by definition of 𝐢𝑚, for each 𝑗 ∈ [[𝑛]] ⧵ 𝑆, we have 𝑤𝑗 ≥ 𝑤𝐢𝑚 , therefore

𝑤𝑗 +
∑

𝑖∈𝑆

𝑤𝑖 ≥
∑

𝑖∈𝑆⊔{𝐢𝑚}
𝑤𝑖 ≥ 𝑞

meaning that 𝑆 is maximal, showing (i).
Now if Opt (14) < 1, then

∑

𝑖∈[[𝑛]]⧵𝑆

𝐗∗
𝑖𝑖 =

∑

𝑖∈[[𝑛]]⧵𝑆
𝑖≠𝐢1,…,𝐢𝑚−1

𝐗∗
𝑖𝑖 =

𝑛
∑

𝑖=1

(

1 − 𝛼∗𝑖
)

𝐗∗
𝑖𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
<1

−
𝑚−1
∑

𝑘=1
𝐗∗
𝐢𝑘𝐢𝑘

⏟⏞⏞⏞⏟⏞⏞⏞⏟
≥0

< 1

so the (MISC)SDP associated to 𝑆 separates 𝐗∗, and the label (ii) is shown.
We can see that the global procedure which constructs a maximal insufficient subset separating a fractional

point 𝐗∗ is pseudo-polynomial, and therefore takes a relatively small computation time compared to the
global computation time of the various models. This allows us, for one of the proposed semidefinite models

14

(mKPC)+SDP or (PmKPC)+, to get an optimal solution 𝐗∗ and try to get a separating inequality that can be
added to the model. Theorically, it is possible to have instances where no separating (MISC) exists, that is
to say that Opt (14) ≥ 1, hence we will integrate in our separation heuristic a solve of the linear relaxation of
(14): indeed, if the objective of the linear relaxation of (14) is greater or equal to 1, we then know that the
value of the integer problem is greater or equal to 1, implying that no maximal insufficient subset separating
𝐗∗ exists, by Proposition 4.

We can now describe our separating procedure for a semidefinite model 𝑀 , as proposed in Algorithm 2.
Algorithm 2 separation procedure
𝐗∗ ← argmin (𝑀)
solve the linear relaxation of (14)
if Opt

(

(14)LP
)

≥ 1 then ⊳ Opt (14) ≥ Opt
(

(14)LP
)

≥ 1, so ∄ (MISC)SDP separating 𝐗∗

return 𝐗∗

else
solve (14)
if Opt (14) ≥ 1 then ⊳ ∄ (MISC)SDP separating 𝐗∗

return 𝐗∗

else
run Algorithm 1 with imput {𝑖 such that 𝛼∗𝑖 = 1

}

get 𝑆 ⊳ by Proposition 4, 𝑆 is maximal & insuffient, such that (MISC)SDP separates 𝐗∗

solve current model with the cut (MISC)SDP associated to 𝑆
end if

end if

In this section, we have developped strengthening techniques for our semidefinite relaxations, valid in-
equalities, by lifting classical binary quadratic constraints to get valid inequalities, and by incorporating the
combinatorial structure of the problem in a separation procedure. Now, we illustrate the effect of these in-
equalities on the quality of the bounds through numerical comparisons.

4. Computationnal results

This section presents the results of computational experiments conducted to evaluate the effectiveness of
the proposed models.
4.1. Experimental setup

The implementation was done in Julia 1.11.2 Bezanson et al. (2017) with the optimization package
JuMP.jl Lubin et al. (2023), version 1.23.6; using HiGHS 1.13.0 Huangfu & Hall (2018) as the MIP solver
and Mosek 10.2.0 MOSEK ApS (2024) for semidefinite programming. All experiments were performed on
Grid’5000 cluster machines Cappello et al. (2005), equipped with Intel® Xeon Gold 6130 CPU running at
2.10 GHz. A time limit of 7200 seconds was imposed on all solvers.

Since the computational difficulty is highly dependent on the instance characteristics Santini & Malaguti
(2024), and many instances of (mKPC) can be efficiently solved using the methods proposed in Santini &
Malaguti (2024), our numerical experiments focused on the most challenging cases, see Appendix C.

15

4.2. Computational experiments
We begin by analyzing the performance of the unpenalized semidefinite relaxation (mKPC)SDP and its

strengthened variant (mKPC)+SDP, comparing them to both the MIP formulation of (mKPC) and its linear
relaxation.
Strenghening valid inequalities (10) to (13). FIGURE 9 illustrates the relative gap, defined as

GAP (%) = 100 ⋅ UB − LB
UB

where UB corresponds to the objective value obtained by the MIP model, and LB denotes the bound provided
by the studied relaxation. FIGURE 9 compares the relative gap of the MIP formulation (mKPC) with its linear
relaxation, as well as with the "naive’ semidefinite relaxation (mKPC)SDP and its strengthened counterpart
(mKPC)+SDP, over a benchmark of 100 instances. The instances are ordered by increasing relative gap in
the linear relaxation, providing an approximate classification of computational difficulty. The near-perfect
overlap between the linear relaxation curve (—–) and the "naive’ semidefinite relaxation curve (- □ -) em-
pirically confirms Conjecture 1 from Section 2.2. More importantly, FIGURE 9 underscores the impact of
the quadratic inequalities introduced in the strengthened model (mKPC)+SDP. The corresponding curve (—–)
consistently lies below the linear relaxation curve, demonstrating that incorporating quadratic inequalities
(10) to (13) effectively strengthens the bound, even for the most challenging instances located on the right-
hand side of the graph. Additionally, the strengthened semidefinite model frequently achieves a relative gap
of 0, indicating that the instance has been solved to optimality.

FIGURE 9: Relative gap between the MIP model
(mKPC) and its linear relaxation, the SDP re-
laxation (mKPC)SDP and its strengthened version
(mKPC)+SDP.

FIGURE 10: Relative gap between the MIP model
(mKPC) and its linear relaxation, the strengthened
SDP relaxation (mKPC)+SDP and the SDP with a sep-
arating (MISC)SDP using Algorithm 2.

Separating (MISC) strategy. FIGURE 10 illustrates the relative gap to the MIP model for the linear relaxation,
the strengthened semidefinite formulation (mKPC)+SDP, and the bound obtained using the separation proce-
dure Algorithm 2. We observe that incorporating a separating (MISC)SDP strategy into the strengthened
semidefinite relaxation via Algorithm 2 leads to tighter objective bounds (- - -). Specifically, for instances
where the strengthened semidefinite model does not achieve a zero relative gap, Proposition 2 implies that

16

the returned optimal solution 𝐗∗ contains fractional coefficients, and in such cases, the separation problem
(14) aims to provide a valid inequality that cuts 𝐗∗, further improving the bound.

Penalized semidefinite approach. When analyzing penalized versions of the model, it is essential to consider
the metrics of imprecision, compactness, and fractionality, as introduced in (7), (8) and (9). FIGURE 11 illus-
trates the behavior of the studied models by representing each solved instance as a point whose coordinates
correspond to the compactness and imprecision scores of the obtained solution: each set of dots of the same
color stands for a studied model. In order to avoid poor visibility on the graph, we only show the data for the
strenghened penalized version (PmKPC)+ for two extreme values of 𝜆 which would give rise to characteristic
behavior. This visualization highlights the influence of different values of 𝜆 on the trade-off between accu-
racy and compactness: the set of dots corresponding to (PmKPC) with 𝜆 = 10 -1 on FIGURE 11 indicates that
setting 𝜆 = 10 -1 tends to produce highly compact solutions, but at the expense of an increasing imprecision
score, indicating that this value overly penalizes compactness. Conversely, 𝜆 = 10 -6 favors accuracy but
results in insufficient compactness, suggesting that the penalty is too weak. The plots in FIGURE 11 provide
an overview of these effects, while a more detailed impact of varying 𝜆 values, for 𝜆 ∈

{

10 -1, 10 -2,… , 10 -6},
can be observed in FIGURES 13a to 13f. For example, with this instance size, a balanced trade-off between
accuracy and compactness can be achieved with 𝜆 ≈ 10 -3, as illustrated in FIGURE 13c.

FIGURE 11: plot of the balance between the imprecision score
and compacity for the MIP model, the strengthened semidefi-
nite relaxation (mKPC)+SDP and two penalized (PmKPC)+.

MODEL AVERAGE
FRACTIONNALITY

(Pm
KP

C)
+ 𝜆 = 10 0 2.779 ⋅ 10 -3

𝜆 = 10 -2 2.339 ⋅ 10 -3
𝜆 = 10 -4 1.673 ⋅ 10 -2
𝜆 = 10 -6 4.326 ⋅ 10 -2

LP 2.583 ⋅ 10 -1
(mKPC)+SDP 1.904 ⋅ 10 -1

FIGURE 12: average fractionnality ob-
served on the benchmark for (LP),
(mKPC)+SDP and (PmKPC)+ for different
𝜆.

17

(a) 𝜆 = 10 -1 (b) 𝜆 = 10 -2 (c) 𝜆 = 10 -3

(d) 𝜆 = 10 -4 (e) 𝜆 = 10 -5 (f) 𝜆 = 10 -6

FIGURE 13: Plots for different values of 𝜆

Fractionality. From a fractionality perspective, the table in FIGURE 12 reports the average fractionality
across the entire benchmark for the different models considered. The results indicate that the penalized
models (PmKPC)+ tend to yield solutions that are closer to integer vectors than those obtained from the
relaxation (mKPC)+SDP. Furthermore, within the penalized models, increasing the value of 𝜆 generally leads
to solutions with lower fractionality. However, even after selecting 𝜆 to strike a balance between accuracy
and compactness, fractionality can still be further reduced by incorporating a (MISC) separating inequal-
ity strategy. FIGURE 14 illustrates the average fractionality across the benchmark for the penalized model
(PmKPC)+ with 𝜆 ∈

{

10 0, 10 -2, 10 -4, 10 -6}, compared to the fractionality observed when a single separating
(MISC)SDP cut is added to the model. Notably, since the considered instances tend to produce solutions
whose coordinates are close to 1

2 Santini & Malaguti (2024), leading to a fractionality score 𝐟𝐫𝐚𝐜 (diag (𝐗∗))
close to 1, FIGURE 14 demonstrates that combining the penalized approach (PmKPC)+ with the separating
strategy Algorithm 2 results in solutions that are closer to an integer matrix.

𝜆 AVERAGE FRACTIONNALITY
(PmKPC)+ Algorithm 2 applied to (PmKPC)+

𝜆 = 10 0 2.779 ⋅ 10 -3 1.243 ⋅ 10 -5
𝜆 = 10 -2 2.339 ⋅ 10 -3 1.311 ⋅ 10 -5
𝜆 = 10 -4 1.673 ⋅ 10 -2 5.069 ⋅ 10 -5
𝜆 = 10 -6 4.326 ⋅ 10 -2 8.510 ⋅ 10 -5

FIGURE 14: Average fractionnality with the separation procedure Algorithm 2.

18

FIGURE 15: Computation time for the studied models on the
benchmark.

Computing time. In terms of computing
time, FIGURE 15 plots how many instances
of the benchmark are solved throughout
time, depending of which model is used.
The curve associated with strenghened
semidefinite relaxation (mKPC)+SDP shows
that this model takes, on average, the longest
to solve an instance, and can therefore be
discarded to produce good solutions to the
problem of detecting change in a time series.
On the other hand, the two curves associ-
ated with the penalized models (PmKPC)+
show that the strategy of freeing ourselves
from the compactness constraints allows av-
erage resolution times comparable to the
MIP model. Hence the penalized approach
demonstrates performance comparable to
the integer model while offering the advan-
tage of tunability, allowing for an optimal balance between compactness and a small imprecision score.
Notably, for 𝜆 = 10 -3, the value recommended to achieve this trade-off, the computational time per instance
remains comparable to that of the MIP model.

5. Conclusions

In this paper, we have developed a novel semidefinite programming approach for the min-knapsack prob-
lem with compactness constraints. Our SDP model incorporates various strengthening techniques, including
the derivation of valid inequalities for the semidefinite setting and a separation procedure, that together yield
tighter bounds and facilitate the design of effective heuristics. In particular, the penalized approach intro-
duces a hyperparameter 𝜆 that allows one to balance the trade-off between solution accuracy and structural
compactness, and our numerical experiments demonstrate a significant improvement in fractionality when
employing a cutting plane scheme.

6. Acknowledgments

This work was supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025) and by MIAI @ Grenoble
Alpes (ANR-19-P3IA-0003), whose support is gratefully acknowledged.

Bibliography

Aminikhanghahi, S., & Cook, D. J. (2017). A survey of methods for time series change point detection.
Knowledge and Information Systems, 51(2), 339–367.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical com-
puting. SIAM Review, 59(1), 65–98.

Cappello, L., & Padilla, O. H. M. (2025). Bayesian variance change point detection with credible sets. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

19

Cappello, F., Caron, E., Daydé, M., Desprez, F., Jégou, Y., Primet, P., ... & Melab, N. (2005). Grid’5000:
A large scale and highly reconfigurable grid experimental testbed. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing.

Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Integer programming models. Springer.
Csirik, J., & Frenk, J. B. G. (1991). Heuristics for the 0-1 min-knapsack problem. Acta Cybernetica, 10(1–2),

15–20.
Cürebal, A., Voß, S., & Jovanovic, R. (2024). Fixed Set Search matheuristic applied to the min-knapsack

problem with compactness constraints and penalty values. In Metaheuristics International Conference
(pp. 264–278). Springer.

De Meijer, F., & Sotirov, R. (2024). On integrality in semidefinite programming for discrete optimization.
SIAM Journal on Optimization, 34(1), 1071–1096.

Hojny, C., Gally, T., Habeck, O., Lüthen, H., Matter, F., Pfetsch, M. E., & Schmitt, A. (2020). Knapsack
polytopes: A survey. Annals of Operations Research, 292, 469–517.

Huangfu, Q., & Hall, J. A. J. (2018). Parallelizing the dual revised simplex method. Mathematical Program-
ming Computation, 10(1), 119–142.

Krislock, N., Malick, J., & Roupin, F. (2017). BiqCrunch: A semidefinite branch-and-bound method for
solving binary quadratic problems. ACM Transactions on Mathematical Software, 43(4), 1–23.

Lubin, M., Dowson, O., Dias Garcia, J., Huchette, J., Legat, B., & Vielma, J. P. (2023). JuMP 1.0: Re-
cent improvements to a modeling language for mathematical optimization. Mathematical Programming
Computation, 15, 581–589.

Mathieu, C., & Sinclair, A. (2009). Sherali-Adams relaxations of the matching polytope. In Proceedings of
the 41st ACM Symposium on Theory of Computing (pp. 293–302).

MOSEK ApS. (2024). MOSEK.jl: Interface to the MOSEK solver for Julia (Version 10.2.0). Retrieved from
https://github.com/MOSEK/Mosek.jl

Poljak, S., Rendl, F., & Wolkowicz, H. (1995). A recipe for semidefinite relaxation for (0,1)-quadratic pro-
gramming. Journal of Global Optimization, 7(1), 51–73.

Pisinger, D. (2005). Where are the hard knapsack problems? Computers & Operations Research, 32(9),
2271–2284.

Santini, A., & Malaguti, E. (2024). The min-knapsack problem with compactness constraints and applications
in statistics. European Journal of Operational Research, 312(1), 385–397.

20

https://github.com/MOSEK/Mosek.jl

Appendix A. Useful tools of semidefinite programming

We recall two useful tools from the theory of semidefinite matrices that will be useful when studying
reformulations of the MIP problem as a semidefinite programm:

Lemma 1 (Schur complement lemma). Let 𝑋 ∈ ℝ𝑛×𝑛 be the following symmetric bloc matrix

𝑋 =
(

𝐴 𝐵⊤

𝐵 𝐶

)

with 𝐴 invertible. Then 𝑋 ⪰ 0 if and only if 𝐴 ⪰ 0 and 𝐶 − 𝐵𝐴−1𝐵⊤ ⪰ 0.

Theorem 1 (Adapted from the SDP literature, see e.g. theorem 3 in De Meijer & Sotirov (2024)). Let
𝑋 ∈ ℝ𝑛×𝑛 be a non-zero symmetric matrix such that

𝑌 =
(

1 diag(𝑋)⊤
diag(𝑋) 𝑋

)

⪰ 0.

Then rank (𝑋) = 1 if and only if 𝑋 ∈ {0, 1}𝑛×𝑛.

Proof. Let us provide a direct proof of the difficult implication, different from the one of De Meijer &
Sotirov (2024): if 𝑋 has coefficients in {0, 1}, then 𝑌 is a {0, 1}-positive semidefinite matrix. Such matrices
have binary eigenvalues, with associated eigenvectors in {0, 1}𝑛+1. Ignoring zero eigenvalues, there is some
𝑦̃1,… , 𝑦̃𝑟 ∈ {0, 1}𝑛+1 such that 𝑌 = 𝑦̃1𝑦̃⊤1 +⋯ + 𝑦̃𝑟𝑦̃⊤𝑟 . Because 𝑌11 = 1, we have (𝑦̃1𝑦̃⊤1 +⋯ + 𝑦̃𝑟𝑦̃⊤𝑟

)

11 =
(

𝑦̃1
)2
1 + ⋯ +

(

𝑦̃𝑟
)2
1 = 1 which implies that only one of the 𝑦̃1,… , 𝑦̃𝑟 has its first coordinate equal to one.

Suppose without loss of generality that this vector is 𝐲 = 𝑦̃1.
By definition of 𝑌 , for all 𝑗 ∈ {1,… , 𝑛 + 1}, we have 𝑌𝑗𝑗 = 𝑌1𝑗 , thus

𝑌1𝑗 =
𝑟
∑

𝑖=1

(

𝑦̃𝑖
)

1
(

𝑦̃𝑖
)

𝑗 = 𝐲1
⏟⏟⏟
=1

𝐲𝑗 +
𝑟
∑

𝑖=2

(

𝑦̃𝑖
)

1
⏟⏟⏟
=0

(

𝑦̃𝑖
)

𝑗 = 𝐲𝑗 = 𝑌𝑗𝑗

meaning that diag(𝑌) = 𝐲. In particular, since 𝐲 is a {0, 1}-vector, we have
𝑟
∑

𝑖=2

(

𝑦̃𝑖
)2
𝑗 = 𝑌𝑗𝑗 −

(

𝑦̃1
)2
𝑗 = 𝐲𝑗 − 𝐲2𝑗

⏟⏟⏟
=𝐲𝑗

= 0

thus all (𝑦̃𝑖
)

𝑗 are zero for 𝑖 = 2,… , 𝑟. Since this is true for all 𝑗, we deduce that all 𝑦̃2,… , 𝑦̃𝑟 are zero, so
𝑌 = 𝐲𝐲⊤, implying rank (𝑌) = 1. Finally, since 𝑋 is a submatrix of 𝑌 , we have rank (𝑋) ≤ rank (𝑌) so X
has rank one.

Appendix B. Non-ROAD instances

Even if empirical results show that most instances have the ROAD property, it is possible to build a family
of instances of the (mKPC) that does not verify this property. To come up with a counterexample, we start

21

from 𝑥∗, an optimal solution of the linear relaxation (mKPC)LP, we set 𝐗 = 𝑥∗𝑥∗⊤ + Diag(𝑥∗−𝑥∗2) and try
to check if 𝐗 verifies the constraints of the naive semidefinite relaxation. It follows easily that the knapsack
constraint of (mKPC)SDP is verified since

𝑤⊤ diag(𝐗) =
𝑛
∑

𝑖=1
𝑤𝑖𝑥

∗
𝑖 ≥ 𝑞;

and on the other hand, since 𝑥∗ ∈ [0, 1]𝑛 we have 𝑥∗𝑖 − 𝑥∗𝑖
2 ≥ 0 for all 𝑖 ∈ [[𝑛]], thus

Diag
(

𝑥∗ − 𝑥∗2
)

= 𝑥∗𝑥∗⊤ + Diag
(

𝑥∗ − 𝑥∗2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐗

−𝑥∗𝑥∗⊤ = 𝐗 − diag (𝐗) diag (𝐗)⊤ ⪰ 0.

By the Schur complement lemma (Lemma 1 in appendix Appendix A), we have
(

1 diag (𝐗)⊤
diag (𝐗) 𝐗

)

⪰ 0

and the conic constraint of (mKPC)SDP is also verified.
The main difficulty lies in the compacity constraints, hence we try to build instances of the (mKPC)

where the compactness constraint behaves differently depending on the formulation chosen: linear on the
one hand, with a left-hand side member in 𝑥𝑖 + 𝑥𝑗 − 1; and quadratic on the other hand, where the left-hand
side member is 𝐗𝑖𝑗 (= 𝑥𝑖𝑥𝑗). The key idea is to build instances whose extremal items have very large weights
compared to the others, which will therefore force them to be taken via the knapsack constraint. Taking these
two items alone will satisfy the knapsack constraint, and we will then have to take a minimum number of
intermediate items to satisfy the compactness constraint. To create an ambiguous situation, we take 𝑛 = 2𝑚
an even number of items with a compactness parameter Δ = 2: an optimal integer solution will therefore be
such that exactly one in two intermediate objects is chosen. The costs of each item are chosen to be 1, and
we build the following problem:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

minimize 1⊤𝑥

subject to (2𝑚 + 1)
(

𝑥1 + 𝑥2𝑚
)

+
2𝑚−1
∑

𝑘=2
𝑥𝑘 ≥ 4𝑚 + 2

∀𝑖, 𝑗 ∈ [[𝑛]], 𝑗 − 𝑖 > 2
⌊

𝑗 − 𝑖 − 1
2

⌋

(

𝑥𝑖 + 𝑥𝑗 − 1
)

≤
𝑗−1
∑

𝑘=𝑖+1
𝑥𝑘

𝑥 ∈ {0, 1}2𝑚

(CE)𝑚

For any 𝑚 ≥ 2, (CE)𝑚 is a integer linear program with 2𝑚 variables which can be seen as an instance of
(mKPC) with 2𝑚 items.

When we solve the linear relaxation of (CE)𝑚, we may wonder whether the quadratic version of the
compactness constraint is always verified, which would imply that (CE)𝑚 has the ROAD property. It turns out
that we can very quickly find cases where the quadratic compactness inequality is not verified. Furthermore,
we can formulate the following conjecture:

22

Conjecture 2. For all 𝑚 ≥ 2, there is an optimal solution 𝑥◦𝑚 of the linear relaxation of (CE)𝑚 for which
there exists 𝑖, 𝑗 ∈ {1,… , 2𝑚} with 𝑗 − 𝑖 > 2 such that

⌊

𝑗 − 𝑖 − 1
2

⌋

(

𝑥◦𝑚
)

𝑖
(

𝑥◦𝑚
)

𝑗 >
𝑗−1
∑

𝑘=𝑖+1

(

𝑥◦𝑚
)

𝑘 .

In particular, the matrix 𝐗 ∶= 𝑥◦𝑚𝑥
◦
𝑚
⊤+Diag

(

𝑥◦𝑚 − 𝑥◦𝑚
2) is not a solution of (mKPC)SDP, and therefore

(CE)𝑚 has not the ROAD property.

For example, for 𝑚 = 5, we can find 𝑥◦5 an optimal solution of the linear relaxation of (CE)𝑚 which is
explicitly

𝑥◦5 =
(

1 3
4

119
180

0 17
135

251
540

0 107
540

11
15

11
15

)⊤

and we can note that for indexes (𝑖, 𝑗) = (2, 9), the quadratic compacity constraint is not verified:
⌊9 − 2 − 1

2

⌋

(

𝑥◦5
)

2
(

𝑥◦5
)

9 = 3 × 3
4
× 11
15

= 33
20

> 29
20

= 119
180

+ 0 + 17
135

+ 251
540

+ 0 + 107
540

=
8
∑

𝑘=3

(

𝑥◦5
)

𝑘 .

Numerically, Conjecture 2 has been verified for all 2 ≤ 𝑚 ≤ 800.
Moreover, for this counter-example, we can see that the inequality in Conjecture 1 is strict since we have,

for 𝑚 = 5, that
Opt

(

(mKPC)SDP
)

≈ 4.42 < 14
3

= Opt
(

(CE)(LP)
5

)

which shows that there is a real difference in behaviour between the linear formulation of the compactness
inequalities

⌊

𝑗 − 𝑖 − 1
Δ

⌋

(

𝑥𝑖 + 𝑥𝑗 − 1
)

≤
𝑗−1
∑

𝑘=𝑖+1
𝑥𝑘

and the quadratic formulation
⌊

𝑗 − 𝑖 − 1
Δ

⌋

𝐗𝑖𝑗 ≤
𝑗−1
∑

𝑘=𝑖+1
𝐗𝑘𝑘.

This leads us to conclude that it is necessary to reinforce the relaxation of the semidefinite model from
Proposition 2, which is done in section 3.

Appendix C. Building the difficult instances

Inspired from Santini & Malaguti (2024), we build our instances are constructed as follows: given an
instance size 𝑛 ∈ ℕ, two peak locations 𝜆1 and 𝜆2 are selected from the index set {1,… , 𝑛}. The first peak
𝜆1 is drawn from a normal distribution 𝒩 (𝑛∕3, 𝑛∕6), while the second peak 𝜆2 follows 𝒩 (2𝑛∕3, 𝑛∕6). To
generate the weight distribution, we construct a histogram by sampling 5000 values for each peak, yielding
two integer vectors 𝑤1, 𝑤2 ∈ ℝ𝑛 whose entries are sampled according to the distributions:

𝑤1 ∼ 𝒩 (𝜆1, 𝑛∕2𝑘) and 𝑤2 ∼ 𝒩 (𝜆2, 𝑛∕2𝑘)

23

where 𝑘 is a generation parameter chosen uniformly from {8, 16, 32}. The final weight vector 𝑤 is obtained
by summing the two generated vectors and normalizing them:

𝑤 ∶=
𝑤1 +𝑤2

‖

‖

𝑤1 +𝑤2
‖

‖1
.

Since the case where all items have identical costs can be solved in polynomial time using dynamic
programming (see Section 4.4 in Cappello & Padilla (2025)), we construct the cost vector 𝑐 ∈ ℝ𝑛 with no
particular structure. Specifically, each coordinate 𝑐𝑖 is drawn independently from a uniform distribution over
the real segment [1, 6]. In particular, a cost cannot be below 1, ensuring that no item is disproportionately
"cheap" and thus easily selectable without significantly impacting the objective value.

The knapsack capacity 𝑞 is determined using a proportion parameter 𝑝 sampled from a uniform distribu-
tion 𝑝 ∼ 𝒰(0.65, 0.95). The capacity is then set as:

𝑞 ∶= 𝑝
𝑛
∑

𝑖=1
𝑤𝑖.

Finally, the compactness parameter Δ is drawn uniformly from the set {1, 2, 3, 4}, enforcing a relatively
compact solution structure.

24

	Introduction
	Knapsack and compactness
	Example of application
	Contributions and outline

	Modeling as a semidefinite program
	Equivalent SDP reformulations
	A first SDP relaxation
	Penalized SDP relaxation

	Strengthening the semidefinite relaxation
	Valid inequalities
	Maximal insufficient subset cuts

	Computationnal results
	Experimental setup
	Computational experiments

	Conclusions
	Acknowledgments
	Bibliography
	Useful tools of semidefinite programming
	Non-ROAD instances
	Building the difficult instances

