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Problem statement

Items i ∈ {1, . . . , n}, with costs ci and weights wi .

• min-Knapsack: find a selection S ⊆ {1, . . . , n} that minimizes the total
cost and verifies ∑

i∈S

wi ≥ q

• Compactness: [Santini and Malaguti, 2024 ]
S contains no gap that exceed ∆.
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Problem statement

Items i ∈ {1, . . . , n}, with costs ci and weights wi .

• min-Knapsack: find a selection S ⊆ {1, . . . , n} that minimizes the total
cost and verifies ∑

i∈S

wi ≥ q

• Compactness: [Santini and Malaguti, 2024 ]
S contains no gap that exceed ∆.

1 2 3 4 5 6 7

Example with n = 7 and ∆ = 2
minimize c⊤x

subject to w⊤x ≥ q

∀i , j ∈ [[n]], j − i > ∆, xi + xj − 1 ≤
j−1∑

k=i+1
xk

x ∈ {0, 1}n
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Example with n = 7 and ∆ = 2


minimize c⊤x

subject to w⊤x ≥ q

∀i , j ∈ [[n]], j − i > ∆,

⌊
j − i − 1

∆

⌋
(xi + xj − 1) ≤

j−1∑
k=i+1

xk

x ∈ {0, 1}n

Strengthening coefficient
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A motivation in statistics

Given a time series {y1, . . . , yn}, how to detect changes?

Method [Cappello and Padilla, 2022 ] focuses most probable change point:
→ Each point gets a probability of being the change point.

A. Santini and E. Malaguti European Journal of Operational Research 312 (2024) 385–397 

Fig. 2. Example time series which change their expected value and variance. Black points indicate the time series values y t . Shaded areas represent periods where, qualita- 

tively, an analyst would expect a change point. 

lected: 

min 

n ∑ 

j=1 

c j x j (1) 

subject to 

n ∑ 

j=1 

w j x j ≥ q (2) 

x i + x j − 1 ≤
j−1 ∑ 

k = i +1 

x k ∀ i, j ∈ { 1 , . . . , n } , j > i + � (3) 

x j ∈ { 0 , 1 } ∀ j ∈ { 1 , . . . , n } . (4) 

We denote constraints (3) the compactness constraints . 

2.2. Complexity 

The mKPC is N P -complete because it contains the min- 

Knapsack problem as a special case when � = n . In the applica- 

tions described in Section 1.1 , however, it can often be the case 

that all items take unit cost (i.e., c j = 1 for all i ∈ { 1 , . . . , n } ). This 

problem is denoted as 1c-mKPC and arises, for example, when the 

user has no prior knowledge of which time instants of a time se- 

ries are more likely to be change points. The following theorem 

establishes a strong result about the 1c-mKPC: namely, that it can 

be solved in polynomial time. 

Theorem 1. Consider the decision version of the 1c-mKPC: for a given 

integer number t ∈ { 1 , . . . , n } , we want to know whether there exists 

a feasible solution of the 1c-mKPC using at most t items. The decision 

version of the 1c-mKPC can be solved in polynomial time. 

Proof. Consider a Dynamic Programming (DP) table W with en- 

tries W (i, � ) for each i ∈ { 1 , . . . , n } and � ∈ { 1 , . . . , i } . Entry W (i, � ) 

will contain the maximum weight of a subset of { 1 , . . . , i } such 

that the set has size � and that the element of the set with the 

highest index is item i . This table can be trivially initialised with 

W (i, 1) = w i for all i ∈ { 1 , . . . , n } . Furthermore, the following DP re- 

cursion is valid: 

W (i, � ) = max 
j∈ 
{

[ i −�] , ... ,i −1 

}{W ( j, � − 1) 
}

+ w i , (5) 

where notation [ i − �] is used as a shorthand for max { 1 , i − �} . 
Recursion (5) is valid because of the following observation. Any set 

of size � having item i as its highest-index element must contain 

at least one element in { [ i − �] , . . . , i − 1 } as its second-highest- 
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Fig. 3. Probabilities associated with each time point and representing how likely the point is to be the first change point of the time series. 

index element. If that were not the case, in fact, the compactness 

constraint would be violated. 

Finally, to know whether there is a subset of { 1 , . . . , n } of size 

at most t such that its elements have weight at least c and that 

satisfies compactness constraints, we must check that 

min 

{
� ∈ { 1 , . . . , n } | ∃ i ∈ { �, . . . , n } s.t. W (i, � ) ≥ q 

}
≤ t. (6) 

We now analyse the complexity of the above algorithm to con- 

clude that it runs in polynomial time in the instance size n . Indeed, 

table W has size O (n 2 ) and we derive the worst-case complexity of 

computing an entry. To compute a generic entry W (i, � ) through 

(5) we need to compare values in rows [ i − �] , . . . , i − 1 of column 

� − 1 , i.e., we perform at most � comparisons. Noting that the ta- 

ble can be built in increasing order of columns and rows (indeed, 

W is lower-triangular) and that � ≤ n , we conclude that the total 

complexity of the DP algorithm is O (n 3 ) . �

3. Related problems 

In addition to applications in statistics discussed in Section 1.1 , 

the mKPC has a specific combinatorial structure. As anticipated, 

the problem falls in the wide family of knapsack problems (see 

Kellerer, Pferschy, & Pisinger, 2004; Martello & Toth, 1990 ). In par- 

ticular, it extends the min-Knapsack problem by introducing com- 

pactness constraints. For the earliest results on the min-Knapsack 

problem in English, we refer the reader to the seminal work of 

Csirik et al. (1991) ; for earlier works in Russian see, e.g., Babat 

(1975) . 

The special structure of compactness constraints can be repre- 

sented by a graph G = (V, E) in which each item i corresponds to 

a vertex v i ∈ V , and an edge { v i , v j } ∈ E is defined for each pair of 

vertices v i and v j , i < j, such that j − i < �. The mKPC asks to se- 

lect a subset of V inducing a connected subgraph, such that the 

corresponding items optimise the associated min-Knapsack prob- 

lem. 

If instead of graph G we are given a generic graph, and if we 

also have to include a predefined subset T ⊂ V of vertices in the 

connected subgraph, the problem is known as the Connection Sub- 

graph problem (see Conrad, Gomes, van Hoeve, Sabharwal, & Suter, 

2007 ). This problem is strongly N P -complete and remains so even 

when T = ∅ . As discussed in Section 2.2 , the mKPC (that is, the 

Connection Subgraph problem with T = ∅ and the special struc- 

ture of graph G ) remains N P -complete. The definition of the mKPC 

as a problem on a graph gives us an interpretation of inequalities 

(3) as a special case of the connectivity constraints introduced by 

Fischetti et al. (2017) to impose connectivity of Steiner trees. How- 
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Fig. 4. The bottom chart shows a credible set relative to the first change point of the time series in the top chart when disregarding compactness. The points in the credible 

set are highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

ever, the special structure of graph G that results when solving 

the mKPC makes it more efficient to specialize those constraints 

to the specific problem without the need to introduce G explicitly. 

In particular, the separation of inequalities (3) is straightforward 

(see Section 4.2 ). 

As discussed, our compactness constraints can be interpreted as 

a connectivity requirement on a suited graph. Similar requirements 

appear in political districting problems, where one has to partition 

geographic units (e.g., counties or census blocks) to obtain dis- 

tricts for elections. Districts must contain geographically contigu- 

ous units and have the same number of inhabitants. Political dis- 

tricting problems are typically defined on a graph where vertices 

represent the geographic units and have a weight corresponding 

to the population, and the edges connect units that are contigu- 

ous. Hence, the problem consists in partitioning the vertices into 

subsets having approximately the same weight and inducing con- 

nected subgraphs. According to several recent contributions, this 

last requirement is the most challenging to be satisfied (see, e.g., 

Ricca, Scozzari, & Simeone, 2013; Validi, Buchanan, & Lykhovyd, 

2022 and Swamy, King, & Jacobson, 2022 ). 

In a different perspective, Stiglmayr, Figueira, Klamroth, Pa- 

quete, & Schulze (2022) introduce some robustness measures for 

solutions in multi-objective integer linear programming. Here the 

idea is to select a solution which is not only efficient but also ro- 

bust, in the sense that its “closeby” solutions are efficient as well 

(allowing for a substitution of the selected solution). The closeness 

of solutions depends on the specific problem and can be identi- 

fied as a change of base via a pivot in a linear program or as a 

“move” in a combinatorial problem. In any case, close solutions are 

denoted as adjacent, thus defining a graph. The robustness of each 

solution is evaluated by analysing its neighbourhood in this graph. 

4. Solution approaches 

In this section, we describe exact approaches for the mKPC. 

We also describe a greedy heuristic for the 1c-mKPC, used in the 

PRISCA package ( Cappello, 2022 ). 

4.1. Integer programming 

The first approach involves solving model (1) –(4) with a black- 

box integer programming solver. The model is compact because it 

uses O (n ) variables and O (n 2 ) constraints. 
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A motivation in statistics

Given a time series {y1, . . . , yn}, how to detect changes?

Method [Cappello and Padilla, 2022 ] focuses most probable change point:
→ Each point gets a probability of being the change point.

A. Santini and E. Malaguti European Journal of Operational Research 312 (2024) 385–397 

Fig. 5. The bottom chart shows a credible set relative to the first change point of the time series in the top chart, considering compactness requirements. The points in the 

credible set are highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Strengthening compactness constraints . Compactness constraints 

(3) state that if two items lying more than � positions apart are 

selected, then at least another item between them must be se- 

lected. These constraints, however, can be made stronger. For ex- 

ample, if the two selected items lie at least 2� positions apart, 

then at least two further items between them shall also be se- 

lected. In general, (3) can be strengthened as follows: 

⌊
j − i − 1 

�

⌋
(x i + x j − 1) ≤

j−1 ∑ 

k = i +1 

x k ∀ i, j ∈ { 1 , . . . , n } , j > i + �. 

(7) 

The following example shows why these constraints help 

tighten the continuous relaxation of the mKPC. Consider an in- 

stance in which the two heaviest items are the first one and the 

last one: let n = 1002 , w 1 = w 1002 = 0 . 495 , and w j = 10 −4 for all 

other j ∈ { 2 , . . . , 1001 } . Further, assume that costs are all equal, 

that � = 5 , and that α = 0 . 95 . Without compactness constraints, 

one might simply choose items 1 and 1002, obtaining a total 

weight of 0 . 99 > 0 . 95 . Due to compactness constraints, however, 

we must “link” these two items, taking other intermediate items. 

The most parsimonious way to achieve that is to take one every 

� items, i.e., items 6, 11,..., 1001. The optimal solution, therefore, 

selects 2 + 200 = 202 items. 

When solving the continuous relaxation of the mKPC, however, 

an optimal solution is x 1 = x 1002 = 1 , and x j = 10 −3 for all other 

j ∈ { 2 , . . . , 1001 } . Such a solution has cost 3 and does not violate 

any compactness constraint. For example, when i = 1 and j = 1002 , 

we have 
∑ j−1 

k = i +1 
x k = 10 0 0 · 10 −3 = 1 and thus (3) is satisfied. On 

the other hand, the strengthened constraint (7) would be violated 

by such a solution: ⌊
1001 

5 

⌋
(x i + x j − 1) = 200(1 + 1 − 1) = 200 
≤ 1 = 

j−1 ∑ 

k = i +1 

x k . 

4.2. On-the-fly constraint generation 

Formulation (1) –(4) has polynomial size, but the number of 

compactness constraints can be very large for large values of n . 

Their management can be impractical, and it can cause a degrada- 

tion of black-box IP solvers’ performances, in particular during pre- 

processing and when solving linear programming relaxations. For 

this reason, we evaluate the effectiveness of a branch-and-cut ap- 

proach in which we first remove the compactness constraints and 
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MIP limitations


minimize c⊤x

subject to w⊤x ≥ q

∀i , j ∈ [[n]], j − i > ∆,

⌊
j − i − 1

∆

⌋
(xi + xj − 1) ≤

j−1∑
k=i+1

xk

x ∈ {0, 1}n
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Modelling as an SDP
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Modelling as an SDP

Substitute X = xx⊤.Then Xij = xixj and Xii = x2
i = xi .



minimize c⊤ diag(X )
subject to w⊤ diag(X ) ≥ q

∀i , j ∈ [[n]], j − i > ∆,

⌊
j − i − 1

∆

⌋
Xij ≤

j−1∑
k=i+1

Xkk

X has coefficients in {0, 1}
rank(X ) = 1
X ⪰ 0
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Xkk
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X ⪰ 0

Theorem (Classical, see e.g. De Meijer and Sotirov, 2024)

Let X =

(
1 diag(X )⊤

diag(X ) X

)
⪰ 0, X ̸= 0. The following are equiv-

alent:

• rank(X ) = 1

• X = xx⊤ with x ∈ {0, 1}n

• X has coefficients in {0, 1}.
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n!
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SDP versus LP

Opt is the optimal integer solution and OptM is the optimal solution returned
by model M; here for the linear (—) and semidefinite (—) relaxations

Gap (%) = 100 · Opt− OptM
Opt
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Modelling as an SDP
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Modelling as an SDP
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minimize c⊤ diag(X )
subject to w⊤ diag(X ) ≥ q

∀i , j ∈ [[n]], j − i > ∆,

⌊
j − i − 1

∆

⌋
Xij ≤

j−1∑
k=i+1

Xkk(
1 diag(X )⊤

diag(X ) X

)
⪰ 0

0 ≤ Xij

Xij ≤ Xii

Xii + Xjj − 1 ≤ Xij

Xik + Xjk ≤ Xkk + Xij

Xii + Xjj + Xkk ≤ Xik + Xjk + Xij

∀i , j , k ∈ [[n]]

20/47



Modelling as an SDP
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minimize c⊤ diag(X )
subject to w⊤ diag(X ) ≥ q

∀i , j ∈ [[n]], j − i > ∆,

⌊
j − i − 1

∆

⌋
Xij ≤

j−1∑
k=i+1

Xkk(
1 diag(X )⊤

diag(X ) X

)
⪰ 0

0 ≤ Xij

Xij ≤ Xii

Xii + Xjj − 1 ≤ Xij

Xik + Xjk ≤ Xkk + Xij

Xii + Xjj + Xkk ≤ Xik + Xjk + Xij

∀i , j , k ∈ [[n]]

tr
(
Diag(w)⊤X

)2 ≤ ∥Diag(w)∥2 · ∥X∥2
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Modelling as an SDP
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∀i , j ∈ [[n]], j − i > ∆,

⌊
j − i − 1

∆

⌋
Xij ≤

j−1∑
k=i+1

Xkk(
1 diag(X )⊤

diag(X ) X

)
⪰ 0

0 ≤ Xij

Xij ≤ Xii

Xii + Xjj − 1 ≤ Xij

Xik + Xjk ≤ Xkk + Xij

Xii + Xjj + Xkk ≤ Xik + Xjk + Xij

∀i , j , k ∈ [[n]]

n∑
i=1

w2
i Xii + 2

∑
1≤i<k≤n

wiwkXik ≤
(

n∑
i=1

w2
i

)( ∑
1≤i,k≤n

Xik

)

Q
ua

dr
at

ic
In

eq
ua

lit
ie

s
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With the added quadratic inequalities

Relative gap for the semidefinite relaxation without (- - -)
vs. with (—–) the quadratic inequalities
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Modelling as a penalized SDP


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∀i , j ∈ [[n]], j − i > ∆,

⌊
j − i − 1

∆

⌋
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k=i+1

Xkk(
1 diag(X )⊤

diag(X ) X

)
⪰ 0

0 ≤ Xij

Xij ≤ Xii

Xii + Xjj − 1 ≤ Xij

Xik + Xjk ≤ Xkk + Xij

Xii + Xjj + Xkk ≤ Xik + Xjk + Xij

∀i , j , k ∈ [[n]]

n∑
i=1

w2
i Xii + 2

∑
1≤i<k≤n

wiwkXik ≤
(

n∑
i=1

w2
i

)( ∑
1≤i,k≤n

Xik

)
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Modelling as a penalized SDP
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i Xii + 2

∑
1≤i<k≤n

wiwkXik ≤
(

n∑
i=1

w2
i

)( ∑
1≤i,k≤n

Xik

)
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Modelling as a penalized SDP

Let (λij)1≤i<j≤n ∈ Rn(n−1)/2



minimize c⊤ diag(X ) +
∑

1≤i<j≤n

λij

(⌊
j − i − 1

∆

⌋
Xij −

j−1∑
k=i+1

Xkk

)
subject to w⊤ diag(X ) ≥ q(

1 diag(X )⊤

diag(X ) X

)
⪰ 0

0 ≤ Xij

Xij ≤ Xii

Xii + Xjj − 1 ≤ Xij

Xik + Xjk ≤ Xkk + Xij

Xii + Xjj + Xkk ≤ Xik + Xjk + Xij

∀i , j , k ∈ [[n]]

n∑
i=1

w2
i Xii + 2

∑
1≤i<k≤n

wiwkXik ≤
(

n∑
i=1

w2
i

)( ∑
1≤i,k≤n

Xik

)
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Measuring the quality of a solution

Let x ∈ [0, 1]n be the solution vector for the min-KPC.

• Parsimony

c⊤x

c⊤1

• Compacity

1
n
max

{
j − i − 1

∣∣∣∣ i , j consecutive
selected items

} (
theoreticaly ≤ ∆

n

)
• Fractionnality

2√
n
·
∥∥∥∥x − ⌊x +

1
2

⌋∥∥∥∥
2

27/47



Measuring the quality of a solution

Let x ∈ [0, 1]n be the solution vector for the min-KPC.

• Parsimony

c⊤x

c⊤1
• Compacity

1
n
max

{
j − i − 1

∣∣∣∣ i , j consecutive
selected items

} (
theoreticaly ≤ ∆

n

)

• Fractionnality
2√
n
·
∥∥∥∥x − ⌊x +

1
2

⌋∥∥∥∥
2

28/47



Measuring the quality of a solution

Let x ∈ [0, 1]n be the solution vector for the min-KPC.

• Parsimony

c⊤x

c⊤1
• Compacity

1
n
max

{
j − i − 1

∣∣∣∣ i , j consecutive
selected items

} (
theoreticaly ≤ ∆

n

)
• Fractionnality

2√
n
·
∥∥∥∥x − ⌊x +

1
2

⌋∥∥∥∥
2

29/47



Measuring the quality of a solution

Benchmark: 100 instances; 4 models.
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Measuring the quality of a solution

Benchmark: 100 instances; 4 models.

Model Average fractionnality

SDP Relaxation 0.1904

Penalized SDP with λ = 0.1 0.0028

Penalized SDP with λ = 0.00001 0.0429
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Measuring the quality of a solution

Benchmark: 100 instances; 4 models.

Model Average fractionnality

SDP Relaxation 0.1904

Penalized SDP with λ = 0.1 0.0028

Penalized SDP with λ = 0.00001 0.0429

How to improve fractionnality?
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Maximal insufficient subset constraints

Definitions (Insufficient subset)

• We call S ⊆ {1, . . . , n} insufficient if∑
i∈S

wi < q.

• We say that S is maximal if:

∀j /∈ S , wj +
∑
i∈S

wi ≥ q.
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Maximal insufficient subset constraints

Definitions (Insufficient subset)

• We call S ⊆ {1, . . . , n} insufficient if∑
i∈S

wi < q.

• We say that S is maximal if:

∀j /∈ S , wj +
∑
i∈S

wi ≥ q.

∑
i /∈S

xi ≥ 1 (MISC)
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Maximal insufficient subset constraints

Definitions (Insufficient subset)

• We call S ⊆ {1, . . . , n} insufficient if∑
i∈S

wi < q.

• We say that S is maximal if:

∀j /∈ S , wj +
∑
i∈S

wi ≥ q.

∑
i /∈S

Xii ≥ 1 (MISC)

Question

Given X ∗ a fractionnal point, how to find S maximal insufficient subset
such that (MISC) separates X ∗?
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MISC separation problem

(MISC) separates X ∗ ⇔ S M.I.S. such that
∑
i /∈S

X ∗
ii < 1
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MISC separation problem

(MISC) separates X ∗ ⇔ S M.I.S. such that
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(1− 1S(i))X
∗
ii < 1
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MISC separation problem

(MISC) separates X ∗ ⇔ S M.I.S. such that
n∑

i=1

(1− 1S(i))X
∗
ii < 1


minimize

n∑
i=1

(1− αi )X
∗
ii

subject to
n∑

i=1
wiαi < q

α ∈ {0, 1}n
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MISC separation problem

(MISC) separates X ∗ ⇔ S M.I.S. such that
n∑

i=1

(1− 1S(i))X
∗
ii < 1


minimize

n∑
i=1

(1− αi )X
∗
ii

subject to
n∑

i=1
wiαi < q

α ∈ {0, 1}n

S ← {i ∈ [[n]] |α∗
i = 1}

while
∑
i∈S

wi < q do

Add j ∈ [[n]] \ S of minimal weight to S
end while
Remove the last item that was added
return S
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MISC separation problem

(MISC) separates X ∗ ⇔ S M.I.S. such that
n∑

i=1

(1− 1S(i))X
∗
ii < 1


minimize

n∑
i=1

(1− αi )X
∗
ii

subject to
n∑

i=1
wiαi < q

α ∈ {0, 1}n

S ← {i ∈ [[n]] |α∗
i = 1}

while
∑
i∈S

wi < q do

Add j ∈ [[n]] \ S of minimal weight to S
end while
Remove the last item that was added
return S

Proposition (adapted from knapsack litterature)

• S is a maximal insufficient subset

• If
n∑

i=1
(1− α∗

i )X
∗
ii < 1, then

∑
i /∈S

X ∗
ii < 1

• If
n∑

i=1
(1− α∗

i )X
∗
ii ≥ 1, then no (MISC) separate X ∗

ii .
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Computational Results; computing times

Benchmark: 100 instances with n ∈ {200, . . . , 400}.
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Computational Results; computing times

Benchmark: 100 instances with n ∈ {200, . . . , 400}.

Model Average fractionnality

SDP Relaxation 0.2509

Penalized SDP with λ = 0.01 1.3107e-5

Penalized SDP with λ = 0.001 6.7288e-6
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Conclusion

• Compactness constraint brings a new layer of difficulties to the standard
knapsack problem.

• The penalized version provides high-quality heuristics and tight bounds for
the problem.

• The penalized version allows tuning the model to the appropriate balance
between parsimony and compacity.

• Future work is needed to strenghen the model and to improve numerical
performance.
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Appendix - PSD matrices

Definition (Positive semidefinite matrix)

A symmetric matrix X ∈ Mn(R) is positive semidefinite if for all v ∈ Rn,
v⊤Xv ≥ 0. We write X ⪰ 0.

Properties

• X ⪰ 0 ⇐⇒ X =
r∑

i=1
λixix

⊤
i with λi ≥ 0 and xi ∈ Rn .

• X ⪰ 0 ⇐⇒ all prinicpal minors of X are nonnegative.

Proposition (Schur complement’s lemma)

Let X be the symmetric matrix defined by

X =

(
A B⊤

B C

)
with A invertible. Then X ⪰ 0 if and only if C − BA−1B⊤ ⪰ 0.



Appendix - Counterexample: SDP vs LP

With 10 items, costs c1 = 1 for all i ∈ [[10]], w1 = w10 = 11, wj = 1 for all
j ̸= 1, 10, q = 22 and ∆ = 2.


minimize x1 + · · ·+ x10

subject to 11x1 + x2 + · · ·+ x9 + 11x10 ≥ 22

∀i , j ∈ [[10]], j − i > 2,
⌊
j − i − 1

2

⌋
(xi + xj − 1) ≤

j−1∑
k=i+1

xk

x ∈ [0, 1]10

Set X = (x∗
LP)

⊤ x∗
LP. Then X is not a solution of

minimize X1 1 + · · ·+ X10 10

subject to 11X1 1 + X2 2 + · · ·+ X9 9 + 11X10 10 ≥ 22

∀i , j ∈ [[10]], j − i > 2,
⌊
j − i − 1

2

⌋
Xij ≤

j−1∑
k=i+1

Xkk(
1 diag (X )⊤

diag (X ) X

)
⪰ 0.



Appendix - Counterexample: SDP vs LP


minimize x1 + · · ·+ x10

subject to 11x1 + x2 + · · ·+ x9 + 11x10 ≥ 22

∀i , j ∈ [[10]], j − i > 2,
⌊
j − i − 1

2

⌋
(xi + xj − 1) ≤

j−1∑
k=i+1

xk

x ∈ [0, 1]10

x∗
LP =

(
1 ,

3
4
,

119
180

, 0 ,
17
135

,
251
540

, 0 ,
107
540

,
11
15

,
11
15

)


minimize X1 1 + · · ·+ X10 10

subject to 11X1 1 + X2 2 + · · ·+ X9 9 + 11X10 10 ≥ 22

∀i , j ∈ [[10]], j − i > 2,
⌊
j − i − 1

2

⌋
Xij ≤

j−1∑
k=i+1

Xkk(
1 diag (X )⊤

diag (X ) X

)
⪰ 0.

X does not verify the (2, 9)-compacity constraint:⌊
9− 2− 1

2

⌋
X2 9 =

33
20

>
29
20

=
8∑

k=3

Xkk

Opt (SDP) ≈ 4.42 < 4.66 ≈ Opt (LP)



Appendix - How to generate instances?

Focus on "hard" instances from [Santini and Malaguti, 2024 ]: TwoPeaks
instances.

• Choose peaks location λ1 ⇝ N (n/3, n/6), λ2 ⇝ N (2n/3, n/6).

• Histogramm 5000 samples for each peak

1st peak w1 ⇝ N (λ1, n/2k) 2nd peak w2 ⇝ N (λ2, n/2k)

where k ∈ {8, 16, 32}.
• Set w ← w1 + w2 and normalize.
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Appendix - Penalized versions

For λ ∈ Rn(n+1)/2:
minimize c⊤ diag(X ) + φ (λ,X )

subject to w⊤ diag(X ) ≥ q(
1 diag(X )⊤

diag(X ) X

)
⪰ 0

Quadratic constraints
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For λ ∈ Rn(n+1)/2:
minimize c⊤ diag(X ) + φ (λ,X )

subject to w⊤ diag(X ) ≥ q(
1 diag(X )⊤

diag(X ) X

)
⪰ 0

Quadratic constraints

MaxGap

minimize c⊤ diag(X ) + τ

subject to τ ≥ λij

(⌊
j − i − 1

∆

⌋
Xij −

j−1∑
k=i+1

Xkk

)



Appendix - Penalized versions

For λ ∈ Rn(n+1)/2:
minimize c⊤ diag(X ) + φ (λ,X )

subject to w⊤ diag(X ) ≥ q(
1 diag(X )⊤

diag(X ) X

)
⪰ 0

Quadratic constraints

PayEachGap

minimize c⊤ diag(X ) +
∑
i<j

λij

⌊
j − i − 1

∆

⌋
Xij

subject to
⌊
j − i − 1

∆

⌋
Xij ≤

j−1∑
k=i+1

Xkk



Appendix - Effets of the different penalizations

selected items for the linear relaxation, with ∆ = 2
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Appendix - Effets of the different penalizations

selected items for the MaxGap penalization, with ∆ = 2



Appendix - Effets of the different penalizations

selected items for the PayEachGap penalization, with ∆ = 2


