Compact Knapsack: a Semidefinite Approach

Hubert Villuendas

 ${\bf \boxtimes} : {\tt hubert.villuendas@univ-grenoble.fr}$

Laboratoire d'Informatique de Grenoble Université Grenoble Alpes

February 26th, 2025

Items $i \in \{1, ..., n\}$, with costs c_i and weights w_i .

• min-Knapsack: find a selection $S \subseteq \{1, \dots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geq q$$

Compactness: [Santini and Malaguti, 2024]
 S contains no gap that exceed Δ.

Items $i \in \{1, ..., n\}$, with costs c_i and weights w_i .

• min-Knapsack: find a selection $S \subseteq \{1, \ldots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geq q$$

 Compactness: [Santini and Malaguti, 2024] S contains no gap that exceed Δ .

Example with n = 7 and $\Delta = 2$

Items $i \in \{1, ..., n\}$, with costs c_i and weights w_i .

• min-Knapsack: find a selection $S \subseteq \{1, \dots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geq q$$

• Compactness: [Santini and Malaguti, 2024] S contains no gap that exceed Δ.

A non-compact example with n=7 and $\Delta=2$

Items $i \in \{1, ..., n\}$, with costs c_i and weights w_i .

• min-Knapsack: find a selection $S \subseteq \{1, \dots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geq q$$

Compactness: [Santini and Malaguti, 2024]
 S contains no gap that exceed Δ.

A non-compact example with n = 7 and $\Delta = 2$

Items $i \in \{1, ..., n\}$, with costs c_i and weights w_i .

• min-Knapsack: find a selection $S \subseteq \{1, \dots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geq q$$

• Compactness: [Santini and Malaguti, 2024] S contains no gap that exceed Δ.

A compact example with n = 7 and $\Delta = 2$

Items $i \in \{1, ..., n\}$, with costs c_i and weights w_i .

• min-Knapsack: find a selection $S \subseteq \{1, \dots, n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geq q$$

• Compactness: [Santini and Malaguti, 2024] S contains no gap that exceed Δ.

Example with n = 7 and $\Delta = 2$

minimize
$$c^{ op}x$$
 subject to $w^{ op}x\geq q$ $\forall i,j\in \llbracket n
rbracket, j-i>\Delta, \quad x_i+x_j-1\leq \sum\limits_{k=i+1}^{j-1}x_k$ $x\in \{0,1\}^n$

Items $i \in \{1, \dots, n\}$, with costs c_i and weights w_i .

• min-Knapsack: find a selection $S\subseteq\{1,\ldots,n\}$ that minimizes the total cost and verifies

$$\sum_{i\in S}w_i\geq q$$

• Compactness: [Santini and Malaguti, 2024] S contains no gap that exceed Δ.

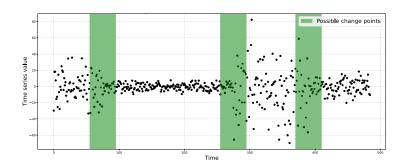
Example with n = 7 and $\Delta = 2$

minimize
$$c^{\top}x$$

subject to $w^{\top}x \geq q$
 $\forall i,j \in [\![n]\!], j-i > \Delta,$ $\left\lfloor \frac{j-i-1}{\Delta} \right\rfloor (x_i+x_j-1) \leq \sum\limits_{k=i+1}^{j-1} x_k$
 $x \in \{0,1\}^n$

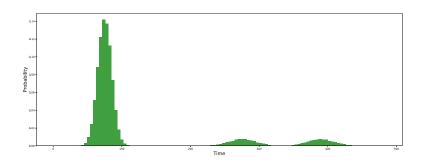
Given a time series $\{y_1, \ldots, y_n\}$, how to detect changes?

Method [Cappello and Padilla, 2022] focuses most probable change point: \rightarrow Each point gets a probability of being the change point.



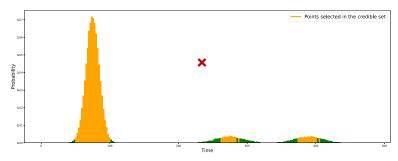
Given a time series $\{y_1, \ldots, y_n\}$, how to detect changes?

Method [Cappello and Padilla, 2022] focuses most probable change point: \rightarrow Each point gets a probability of being the change point.



Given a time series $\{y_1, \ldots, y_n\}$, how to detect changes?

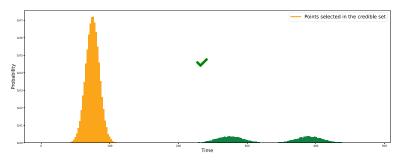
Method [*Cappello and Padilla, 2022*] focuses **most probable** change point: \rightarrow Each point gets a probability of being the change point.



Credible set relative to the first change point

Given a time series $\{y_1, \ldots, y_n\}$, how to detect changes?

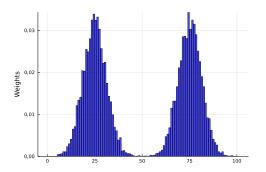
Method [*Cappello and Padilla, 2022*] focuses **most probable** change point: \rightarrow Each point gets a probability of being the change point.



Credible set relative to the first change point with the compactness constraint

MIP limitations

$$\begin{bmatrix} & \text{minimize} & c^\top x \\ & \text{subject to} & w^\top x \geq q \\ & & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor (x_i+x_j-1) \leq \sum\limits_{k=i+1}^{j-1} x_k \\ & & x \in \{0,1\}^n \end{bmatrix}$$



$$\begin{bmatrix} \text{ minimize } & c^\top x \\ \text{ subject to } & w^\top x \geq q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor (x_i + x_j - 1) \leq \sum\limits_{k=i+1}^{j-1} x_k \\ & x \in \{0,1\}^n \end{bmatrix}$$

Substitute
$$X = xx^{\top}$$
. Then $X_{ij} = x_i x_j$ and $X_{ii} = x_i^2 = x_i$.

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & & \forall i,j \in \llbracket n \rrbracket, \ j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leq \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & X \text{ has coefficients in } \{0,1\} \\ & \operatorname{rank}(X) = 1 \\ & X \succeq 0 \end{aligned}$$

Substitute $X = xx^{\top}$. Then $X_{ij} = x_ix_j$ and $X_{ii} = x_i^2 = x_i$.

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \forall i,j \in \llbracket n \rrbracket, \ j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leq \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & X \text{ has coefficients in } \left\{ 0,1 \right\} \\ & \operatorname{rank}(X) = 1 \\ & X \succeq 0 \end{aligned}$$

Theorem (Classical, see e.g. De Meijer and Sotirov, 2024)

Let
$$\overline{X} = \begin{pmatrix} 1 & \operatorname{diag}(X)^{\top} \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0$$
, $X \neq 0$. The following are equivalent:

- rank(X) = 1
- $X = xx^{\top}$ with $x \in \{0,1\}^n$
- *X* has coefficients in {0,1}.

Substitute $X = xx^{\top}$. Then $X_{ij} = x_i x_j$ and $X_{ii} = x_i^2 = x_i$.

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \forall i,j \in \llbracket n \rrbracket, \, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leq \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix} \right) \succeq 0 \\ & \operatorname{rank}(X) = 1 \end{aligned}$$

Theorem (Classical, see e.g. De Meijer and Sotirov, 2024)

Let
$$\overline{X} = \begin{pmatrix} 1 & \operatorname{diag}(X)^{\top} \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0$$
, $X \neq 0$. The following are equivalent:

- rank(X) = 1
- $X = xx^{\top}$ with $x \in \{0, 1\}^n$
- X has coefficients in $\{0,1\}$.

Substitute
$$X = xx^{\top}$$
. Then $X_{ij} = x_i x_j$ and $X_{ii} = x_i^2 = x_i$.

minimize
$$c^{\top} \operatorname{diag}(X)$$
 subject to $w^{\top} \operatorname{diag}(X) \ge q$
$$\forall i, j \in \llbracket n \rrbracket, j - i > \Delta, \quad \left\lfloor \frac{j - i - 1}{\Delta} \right\rfloor X_{ij} \le \sum_{k = i + 1}^{j - 1} X_{kk}$$

$$\begin{pmatrix} 1 & \operatorname{diag}(X)^{\top} \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0$$

$$\frac{\operatorname{rank}(X) = 1}{\operatorname{rank}(X)}$$

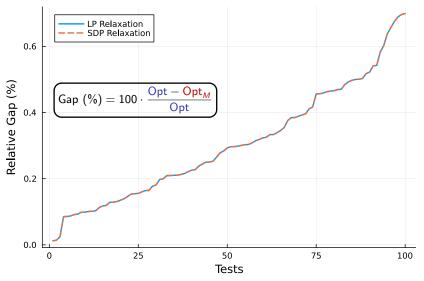
Relaxo

Theorem (Classical, see e.g. De Meijer and Sotirov, 2024)

Let
$$\overline{X} = \begin{pmatrix} 1 & \operatorname{diag}(X)^{\top} \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0$$
, $X \neq 0$. The following are equivalent:

- $\operatorname{rank}(X) = 1$
- $X = xx^{\top}$ with $x \in \{0, 1\}^n$
- X has coefficients in $\{0,1\}$.

SDP versus LP 🔞



Opt is the optimal integer solution and Opt_M is the optimal solution returned by model M; here for the linear (—) and semidefinite (—) relaxations

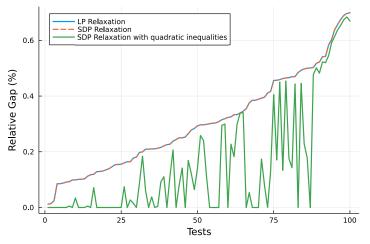
$$\begin{array}{ll} \text{minimize} & c^\top \operatorname{diag}(X) \\ \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leq \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix} \right) \succeq 0 \end{array}$$

$$\begin{bmatrix} \text{ minimize } & c^\top \operatorname{diag}(X) \\ \text{ subject to } & w^\top \operatorname{diag}(X) \geq q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leq \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix} \right) \succeq 0 \\ & 0 \leq X_{ij} \\ & X_{ij} \leq X_{ii} \\ & X_{ij} + X_{jj} - 1 \leq X_{ij} \\ & X_{ik} + X_{jk} \leq X_{kk} + X_{ij} \\ & X_{ii} + X_{jj} + X_{kk} \leq X_{ik} + X_{jk} + X_{ij} \end{bmatrix} \forall i,j,k \in \llbracket n \rrbracket$$

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leq \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix} \right) \succeq 0 \\ & 0 \leq X_{ij} \\ & X_{ij} \leq X_{ii} \\ & X_{ij} \leq X_{ii} \\ & X_{ik} + X_{ji} - 1 \leq X_{ij} \\ & X_{ik} + X_{jk} \leq X_{kk} + X_{ij} \\ & X_{ii} + X_{jj} + X_{kk} \leq X_{ik} + X_{jk} + X_{ij} \\ & \operatorname{tr} \left(\operatorname{Diag}(w)^\top X \right)^2 \leq \| \operatorname{Diag}(w) \|^2 \cdot \| X \|^2 \end{bmatrix} \forall i, j, k \in \llbracket n \rrbracket$$

$$\begin{bmatrix} \text{minimize} & c^\top \operatorname{diag}(X) \\ \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leq \sum_{k=i+1}^{j-1} X_{kk} \\ & \left(1 \operatorname{diag}(X)^\top \right) \succeq 0 \\ & 0 \leq X_{ij} \\ & X_{ij} \leq X_{ii} \\ & X_{ij} \leq X_{ij} \\ & X_{ik} + X_{jj} - 1 \leq X_{ij} \\ & X_{ik} + X_{jk} \leq X_{kk} + X_{ij} \\ & X_{ii} + X_{jj} + X_{kk} \leq X_{ik} + X_{jk} + X_{ij} \end{bmatrix} \forall i,j,k \in \llbracket n \rrbracket$$

With the added quadratic inequalities



Relative gap for the semidefinite relaxation without (- - -) vs. with (---) the quadratic inequalities

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \forall i,j \in \llbracket n \rrbracket, j-i > \Delta, \quad \left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} \leq \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix} \right) \succeq 0 \\ & 0 \leq X_{ij} \\ & X_{ij} \leq X_{ii} \\ & X_{ij} \leq X_{ii} \\ & X_{ii} + X_{jj} - 1 \leq X_{ij} \\ & X_{ik} + X_{jk} \leq X_{kk} + X_{ij} \\ & X_{ii} + X_{jj} + X_{kk} \leq X_{ik} + X_{jk} + X_{ij} \\ & \sum\limits_{i=1}^{n} w_i^2 X_{ii} + 2 \sum\limits_{1 \leq i < k \leq n} w_i w_k X_{ik} \leq \left(\sum\limits_{i=1}^{n} w_i^2 \right) \left(\sum\limits_{1 \leq i,k \leq n} X_{ik} \right) \end{bmatrix}$$

$$\begin{bmatrix} \text{minimize} & c^{\top} \operatorname{diag}(X) \\ \text{subject to} & w^{\top} \operatorname{diag}(X) \geq q \\ \forall i, j \in \llbracket n \rrbracket, j - i > \Delta, \quad \left\lfloor \frac{j - i - 1}{\Delta} \right\rfloor X_{ij} \leq \sum_{k=i+1}^{j-1} X_{kk} \\ \begin{pmatrix} 1 & \operatorname{diag}(X)^{\top} \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0 \\ 0 & \leq X_{ij} \\ X_{ij} & \leq X_{ii} \\ X_{ij} & \leq X_{ii} \\ X_{ii} + X_{jj} - 1 & \leq X_{ij} \\ X_{ik} + X_{jk} & \leq X_{kk} + X_{ij} \\ X_{ii} + X_{jj} + X_{kk} & \leq X_{ik} + X_{jk} + X_{ij} \end{bmatrix} \forall i, j, k \in \llbracket n \rrbracket \\ \sum_{i=1}^{n} w_i^2 X_{ii} + 2 \sum_{1 \leq i < k \leq n} w_i w_k X_{ik} \leq \left(\sum_{i=1}^{n} w_i^2\right) \left(\sum_{1 \leq i, k \leq n} X_{ik}\right) \end{bmatrix}$$

Let
$$(\lambda_{ij})_{1 \leq i < j \leq n} \in \mathbb{R}^{n(n-1)/2}$$

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) & + \sum\limits_{1 \leq i < j \leq n} \lambda_{ij} \left(\left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} - \sum\limits_{k=i+1}^{j-1} X_{kk} \right) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \begin{pmatrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{pmatrix} \succeq 0 \\ & 0 \leq X_{ij} \\ & X_{ij} \leq X_{ii} \\ & X_{ij} \leq X_{ij} \\ & X_{ik} + X_{jj} - 1 \leq X_{ij} \\ & X_{ik} + X_{jk} \leq X_{kk} + X_{ij} \\ & X_{ii} + X_{jj} + X_{kk} \leq X_{ik} + X_{jk} + X_{ij} \end{bmatrix} \forall i, j, k \in \llbracket n \rrbracket \\ & \sum_{i=1}^n w_i^2 X_{ii} + 2 \sum_{1 \leq i < k \leq n} w_i w_k X_{ik} \leq \left(\sum_{i=1}^n w_i^2 \right) \left(\sum_{1 \leq i, k \leq n} X_{ik} \right) \end{bmatrix}$$

Let $x \in [0,1]^n$ be the solution vector for the min-KPC.

Parsimony

$$\frac{c^{\top}x}{c^{\top}\mathbf{1}}$$

Let $x \in [0,1]^n$ be the solution vector for the min-KPC.

Parsimony

$$\frac{c^{\top}x}{c^{\top}\mathbf{1}}$$

Compacity

$$\frac{1}{n} \max \left\{ j - i - 1 \; \middle| \; \begin{array}{c} i, j \text{ consecutive} \\ \text{selected items} \end{array} \right\} \qquad \left(\text{theoreticaly } \leq \frac{\Delta}{n} \right)$$

Let $x \in [0,1]^n$ be the solution vector for the min-KPC.

Parsimony

$$\frac{c^{\top}x}{c^{\top}\mathbf{1}}$$

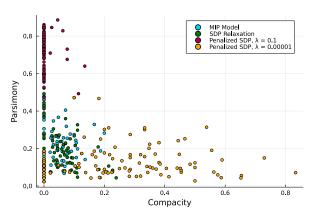
Compacity

$$\frac{1}{n} \max \left\{ j - i - 1 \mid i, j \text{ consecutive selected items} \right\}$$
 (theoretically $\leq \frac{\Delta}{n}$)

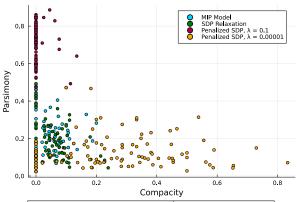
Fractionnality

$$\frac{2}{\sqrt{n}} \cdot \left\| x - \left[x + \frac{1}{2} \right] \right\|_{2}$$

Benchmark: 100 instances; 4 models.

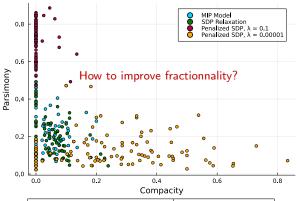


Benchmark: 100 instances; 4 models.



Model	Average fractionnality
SDP Relaxation	0.1904
Penalized SDP with $\lambda=0.1$	0.0028
Penalized SDP with $\lambda = 0.00001$	0.0429

Benchmark: 100 instances; 4 models.



Model	Average fractionnality
SDP Relaxation	0.1904
Penalized SDP with $\lambda=0.1$	0.0028
Penalized SDP with $\lambda = 0.00001$	0.0429

Maximal insufficient subset constraints

Definitions (Insufficient subset)

ullet We call $S\subseteq\{1,\ldots,n\}$ insufficient if

$$\sum_{i \in S} w_i < q$$

Maximal insufficient subset constraints

Definitions (Insufficient subset)

• We call $S \subseteq \{1, \dots, n\}$ insufficient if

$$\sum_{i \in S} w_i < q.$$

• We say that S is maximal if:

$$\forall j \notin S, \qquad w_j + \sum_{i \in S} w_i \geq q.$$

Maximal insufficient subset constraints

Definitions (Insufficient subset)

• We call $S \subseteq \{1, \ldots, n\}$ insufficient if

$$\sum_{i \in S} w_i < q.$$

• We say that S is maximal if:

$$\forall j \notin S, \qquad w_j + \sum_{i \in S} w_i \geq q.$$

$$\sum_{i \notin S} x_i \ge 1 \tag{MISC}$$

Maximal insufficient subset constraints

Definitions (Insufficient subset)

• We call $S \subseteq \{1, \ldots, n\}$ insufficient if

$$\sum_{i \in S} w_i < q.$$

• We say that *S* is *maximal* if:

$$\forall j \notin S, \qquad w_j + \sum_{i \in S} w_i \geq q.$$

$$\sum_{i \notin S} X_{ii} \ge 1 \tag{MISC}$$

Question

Given X^* a fractionnal point, how to find S maximal insufficient subset such that (MISC) separates X^* ?

(MISC) separates
$$X^* \quad \Leftrightarrow \quad S$$
 M.I.S. such that $\sum_{i
otin S} X_{ii}^* < 1$

(MISC) separates
$$X^* \quad \Leftrightarrow \quad S$$
 M.I.S. such that $\sum_{i=1}^n \left(1 - \mathbb{1}_S(i)\right) X_{ii}^* < 1$

(MISC) separates
$$X^* \quad \Leftrightarrow \quad S$$
 M.I.S. such that $\sum_{i=1}^n \left(1 - \mathbb{1}_S(i)\right) X_{ii}^* < 1$

$$\begin{bmatrix} & \text{minimize} & \sum\limits_{i=1}^{n} \left(1-\alpha_i\right) X_{ii}^* \\ & \text{subject to} & \sum\limits_{i=1}^{n} w_i \alpha_i < q \\ & \alpha \in \left\{0,1\right\}^n \end{bmatrix}$$

(MISC) separates
$$X^* \Leftrightarrow S$$
 M.I.S. such that $\sum_{i=1}^n \left(1 - \mathbb{1}_S(i)\right) X_{ii}^* < 1$

minimize
$$\sum_{i=1}^{n} (1 - \alpha_i) X_{ii}^*$$
 subject to $\sum_{i=1}^{n} w_i \alpha_i < q$ $\alpha \in \{0,1\}^n$

$$\begin{split} S &\leftarrow \{i \in \llbracket n \rrbracket \mid \alpha_i^* = 1\} \\ &\text{while } \sum_{i \in S} w_i < q \text{ do} \\ &\text{Add } j \in \llbracket n \rrbracket \setminus S \text{ of minimal weight to } S \\ &\text{end while} \\ &\text{Remove the last item that was added} \\ &\text{return } S \end{split}$$

(MISC) separates
$$X^* \Leftrightarrow S$$
 M.I.S. such that $\sum_{i=1}^n \left(1 - \mathbb{1}_S(i)\right) X_{ii}^* < 1$

minimize
$$\sum_{i=1}^{n} (1 - \alpha_i) X_{ii}^*$$
 subject to $\sum_{i=1}^{n} w_i \alpha_i < q$ $\alpha \in \{0,1\}^n$

$$S \leftarrow \{i \in \llbracket n \rrbracket \mid \alpha_i^* = 1\}$$
 while $\sum\limits_{i \in S} w_i < q$ do Add $j \in \llbracket n \rrbracket \setminus S$ of minimal weight to S end while Remove the last item that was added

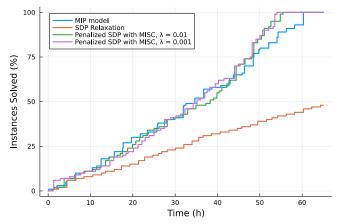
Proposition (adapted from knapsack litterature)

- S is a maximal insufficient subset
- If $\sum\limits_{i=1}^n \left(1-lpha_i^*\right) X_{ii}^* < 1$, then $\sum\limits_{i
 otin S} X_{ii}^* < 1$
- If $\sum\limits_{i=1}^{n}\left(1-lpha_{i}^{*}\right)X_{ii}^{*}\geq1$, then no (MISC) separate $X_{ii}^{*}.$

return S

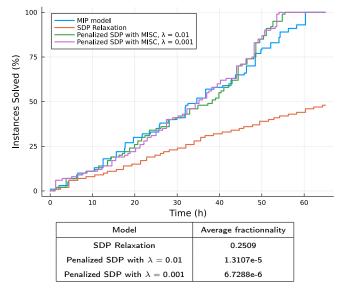
Computational Results; computing times

Benchmark: 100 instances with $n \in \{200, \dots, 400\}$.



Computational Results; computing times

Benchmark: 100 instances with $n \in \{200, \dots, 400\}$.



Conclusion

• Compactness constraint brings a new layer of difficulties to the standard knapsack problem.

Conclusion

- Compactness constraint brings a new layer of difficulties to the standard knapsack problem.
- The penalized version provides high-quality heuristics and tight bounds for the problem.

Conclusion '

- Compactness constraint brings a new layer of difficulties to the standard knapsack problem.
- The penalized version provides high-quality heuristics and tight bounds for the problem.
- The penalized version allows tuning the model to the appropriate balance between parsimony and compacity.

- Compactness constraint brings a new layer of difficulties to the standard knapsack problem.
- The penalized version provides high-quality heuristics and tight bounds for the problem.
- The penalized version allows tuning the model to the appropriate balance between parsimony and compacity.
- Future work is needed to strenghen the model and to improve numerical performance.

References

Cappello, L. and Padilla, O. H. M. (2022).

Bayesian variance change point detection with credible sets. arXiv preprint arXiv:2211.14097.

De Meijer, F. and Sotirov, R. (2024).

On integrality in semidefinite programming for discrete optimization. *SIAM Journal on Optimization*, 34(1):1071–1096.

Santini, A. and Malaguti, E. (2024).

The min-knapsack problem with compactness constraints and applications in statistics.

European Journal of Operational Research, 312(1):385-397.

Appendix - PSD matrices

Definition (Positive semidefinite matrix)

A symmetric matrix $X \in M_n(\mathbf{R})$ is *positive semidefinite* if for all $v \in \mathbf{R}^n$, $v^\top X v > 0$. We write $X \succ 0$.

Properties

- $X \succeq 0 \iff X = \sum_{i=1}^r \lambda_i x_i x_i^{\top} \text{ with } \lambda_i \geq 0 \text{ and } x_i \in \mathbf{R}^n$.
- $X \succeq 0 \iff$ all prinicpal minors of X are nonnegative.

Proposition (Schur complement's lemma)

Let X be the symmetric matrix defined by

$$X = \begin{pmatrix} A & B^{\top} \\ B & C \end{pmatrix}$$

with A invertible. Then $X \succeq 0$ if and only if $C - BA^{-1}B^{\top} \succeq 0$.

Appendix - Counterexample: SDP vs LP

With 10 items, costs $c_1=1$ for all $i\in [[10]]$, $w_1=w_{10}=11$, $w_j=1$ for all $j\neq 1,10$, q=22 and $\Delta=2$.

$$\begin{bmatrix} & \text{minimize} & x_1 + \dots + x_{10} \\ & \text{subject to} & 11x_1 + x_2 + \dots + x_9 + 11x_{10} \ge 22 \\ & \forall i, j \in \llbracket 10 \rrbracket, j - i > 2, \quad \left\lfloor \frac{j - i - 1}{2} \right\rfloor (x_i + x_j - 1) \le \sum_{k = i + 1}^{j - 1} x_k \\ & x \in [0, 1]^{10} \end{bmatrix}$$

Set $\mathbf{X} = (x_{\mathbf{LP}}^*)^{\top} x_{\mathbf{LP}}^*$. Then \mathbf{X} is not a solution of

$$\begin{bmatrix} & \text{minimize} & X_{1\,1} + \dots + X_{10\,10} \\ & \text{subject to} & & 11X_{1\,1} + X_{2\,2} + \dots + X_{9\,9} + 11X_{10\,10} \geq 22 \\ & & \forall i,j \in \llbracket 10 \rrbracket, j-i > 2, \quad \left\lfloor \frac{j-i-1}{2} \right\rfloor X_{ij} \leq \sum\limits_{k=i+1}^{j-1} X_{kk} \\ & \left(\begin{matrix} 1 & \operatorname{diag}\left(X\right)^\top \\ \operatorname{diag}\left(X\right) & X \end{matrix} \right) \succeq 0. \end{bmatrix}$$

Appendix - Counterexample: SDP vs LP

minimize
$$x_1 + \dots + x_{10}$$
 subject to $11x_1 + x_2 + \dots + x_9 + 11x_{10} \ge 22$
$$\forall i, j \in \llbracket 10 \rrbracket, j - i > 2, \quad \left\lfloor \frac{j - i - 1}{2} \right\rfloor (x_i + x_j - 1) \le \sum_{k = i + 1}^{j - 1} x_k$$

$$x \in \llbracket 0, 1 \rrbracket^{10}$$

$$x_{\mathsf{LP}}^* = \left(1, \frac{3}{4}, \frac{119}{180}, 0, \frac{17}{135}, \frac{251}{540}, 0, \frac{107}{540}, \frac{11}{15}, \frac{11}{15}\right)$$
 minimize $X_{11} + \dots + X_{1010}$ subject to $11X_{11} + X_{22} + \dots + X_{99} + 11X_{1010} \ge 22$
$$\forall i, j \in \llbracket 10 \rrbracket, j - i > 2, \quad \left\lfloor \frac{j - i - 1}{2} \right\rfloor X_{ij} \le \sum_{k = i + 1}^{j - 1} X_{kk}$$

$$\left(1 \quad \text{diag}(X) \quad X\right)^\top \ge 0.$$

X does not verify the (2,9)-compacity constraint:

$$\left[\frac{9-2-1}{2}\right] \mathbf{X}_{29} = \left[\frac{33}{20} > \frac{29}{20}\right] = \sum_{k=3}^{8} \mathbf{X}_{kk}$$
Opt (SDP) $\approx 4.42 < 4.66 \approx \text{Opt (LP)}$

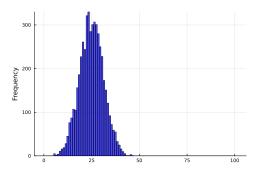
Focus on "hard" instances from [Santini and Malaguti, 2024]: TwoPeaks instances.

• Choose peaks location $\lambda_1 \rightsquigarrow \mathcal{N}(n/3, n/6), \lambda_2 \rightsquigarrow \mathcal{N}(2n/3, n/6).$

Focus on "hard" instances from [Santini and Malaguti, 2024]: TwoPeaks instances.

- Choose peaks location $\lambda_1 \rightsquigarrow \mathcal{N}(n/3, n/6)$, $\lambda_2 \rightsquigarrow \mathcal{N}(2n/3, n/6)$.
- Histogramm 5000 samples for each peak

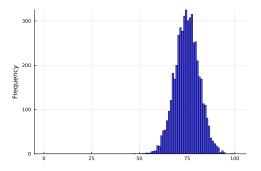
$$1^{\mathsf{st}}$$
 peak $w_1 \rightsquigarrow \mathcal{N}(\lambda_1, n/2k)$ 2^{nd} peak $w_2 \rightsquigarrow \mathcal{N}(\lambda_2, n/2k)$ where $k \in \{8, 16, 32\}$.



Focus on "hard" instances from [Santini and Malaguti, 2024]: TwoPeaks instances.

- Choose peaks location $\lambda_1 \rightsquigarrow \mathcal{N}(n/3, n/6)$, $\lambda_2 \rightsquigarrow \mathcal{N}(2n/3, n/6)$.
- Histogramm 5000 samples for each peak

$$1^{\mathsf{st}}$$
 peak $w_1 \rightsquigarrow \mathcal{N}(\lambda_1, n/2k)$ 2^{nd} peak $w_2 \rightsquigarrow \mathcal{N}(\lambda_2, n/2k)$ where $k \in \{8, 16, 32\}$.

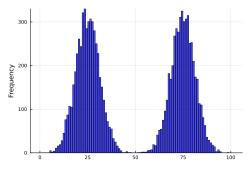


Focus on "hard" instances from [Santini and Malaguti, 2024]: TwoPeaks instances.

- Choose peaks location $\lambda_1 \rightsquigarrow \mathcal{N}(n/3, n/6)$, $\lambda_2 \rightsquigarrow \mathcal{N}(2n/3, n/6)$.
- Histogramm 5000 samples for each peak

$$1^{\mathrm{st}}$$
 peak $w_1 \rightsquigarrow \mathcal{N}(\lambda_1, n/2k)$ 2^{nd} peak $w_2 \rightsquigarrow \mathcal{N}(\lambda_2, n/2k)$ where $k \in \{8, 16, 32\}$.

• Set $w \leftarrow w_1 + w_2$ and normalize.



For $\lambda \in \mathbf{R}^{n(n+1)/2}$:

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) + \varphi\left(\lambda, X\right) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \left(\begin{array}{cc} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{array} \right) \succeq 0 \\ & & \operatorname{Quadratic constraints} \end{bmatrix}$$

For
$$\lambda \in \mathbf{R}^{n(n+1)/2}$$
:

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) + \varphi\left(\lambda, X\right) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix} \right) \succeq 0 \\ & & \operatorname{Quadratic constraints} \end{aligned}$$

Pay&Reward

minimize
$$c^{\top} \operatorname{diag}(X) + \sum\limits_{i < j} \lambda_{ij} \left(\left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} - \sum\limits_{k=i+1}^{j-1} X_{kk} \right)$$

For
$$\lambda \in \mathbf{R}^{n(n+1)/2}$$
:

$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) + \varphi\left(\lambda, X\right) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix} \right) \succeq 0 \\ & & \operatorname{Quadratic constraints} \end{aligned}$$

MaxGap

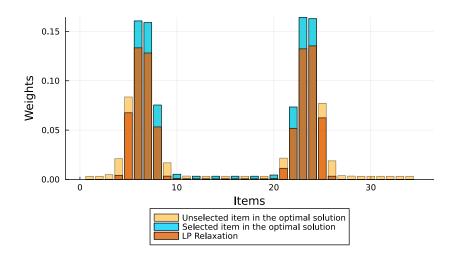
$$\begin{array}{ll} \text{minimize} & c^\top \operatorname{diag}(X) + \tau \\ \text{subject to} & \tau \geq \lambda_{ij} \left(\left\lfloor \frac{j-i-1}{\Delta} \right\rfloor X_{ij} - \sum\limits_{k=i+1}^{j-1} X_{kk} \right) \end{array}$$

For
$$\lambda \in \mathbf{R}^{n(n+1)/2}$$
:

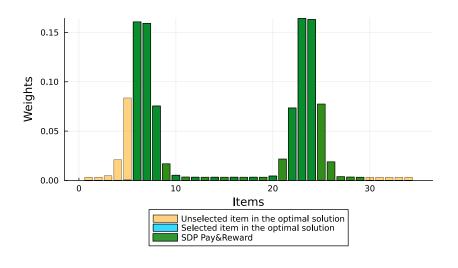
$$\begin{bmatrix} & \text{minimize} & c^\top \operatorname{diag}(X) + \varphi\left(\lambda, X\right) \\ & \text{subject to} & w^\top \operatorname{diag}(X) \geq q \\ & \left(\begin{matrix} 1 & \operatorname{diag}(X)^\top \\ \operatorname{diag}(X) & X \end{matrix} \right) \succeq 0 \\ & & \operatorname{Quadratic constraints} \end{aligned}$$

PayEachGap

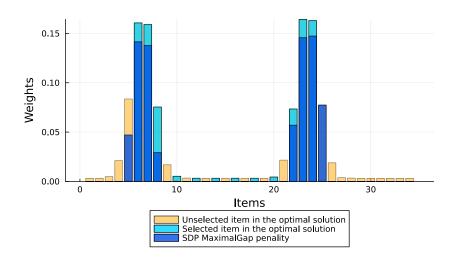
minimize
$$c^{\top} \operatorname{diag}(X) + \sum_{i < j} \lambda_{ij} \left\lfloor \frac{j - i - 1}{\Delta} \right\rfloor X_{ij}$$
 subject to $\left\lfloor \frac{j - i - 1}{\Delta} \right\rfloor X_{ij} \le \sum_{k = i + 1}^{j - 1} X_{kk}$



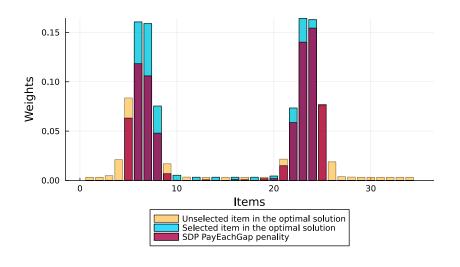
selected items for the linear relaxation, with $\Delta=2\,$



selected items for the Pay&Reward penalization, with $\Delta=2\,$



selected items for the MaxGap penalization, with $\Delta = 2$



selected items for the PayEachGap penalization, with $\Delta=2\,$