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Problem statement
Knapsack with compactness constraints:
extension of the classical minimization knapsack:
n items i ∈ [[n]] with costs ci and weights wi .

•Goal: find S ⊆ [[n]] minimizing the total cost
while ensuring that the total weight exceeds a
given threshold q.

•Compactness: the selected items must re-
main grouped together.

There must not have gaps of more than ∆ ≥ 1
in between two consecutive selected items. [3]

For example, with ∆ = 2:
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(Fig 1: non-compact selection)
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(Fig 2: compact selection)

The problem has applications in statistics, e.g.
detecting changes in time series [1].

Models

• Imput: costs c ∈ Rn+, weights w ∈ Rn+,
threshold q ∈ R+
•Variables: xi binary, (xi = 1 ⇔ item i is

selected).


minimize c⊤x

subject to w⊤x ≥ q
compactness constraints
x ∈ {0, 1}n

Two expressions for the compactness constraints: i , j ∈ [[n]] with j − i > ∆:

xi + xj − 1 ≤
j−1∑
k=i+1

xk (1a)

(Linear compactness constraint - [3] approach)

xixj ≤
j−1∑
k=i+1

xk. (1b)

(Quadratic compactness constraint - our approach)

Semidefinite relaxation: with the matrix X as variable, c⊤diag(X) for the objective function, the
knapsack constraint w⊤diag(X) ≥ q and the constraints:

Strenghening coefficient⌊
j − i − 1
∆

⌋
Xi j ≤

j−1∑
k=i+1

Xkk (1b)SDP

(
1 diag (X)⊤

diag (X) X

)
⪰ 0. (2)

Our approach: penalized model
The compactness is enforced in the objective rather than in the constraints: for a penalization parameter
λ ∈ R+, the objective function becomes

c⊤ diag(X) + λ
∑
1≤i≤j≤n
j−i>∆

⌊j − i − 1
∆

⌋
Xi j −

j−1∑
k=i+1

Xkk

 .

Strengthening inequalities

Valid quadratic inequality, linearize and lift to the
matrix space:

xixj ↔ Xi j
Xi j ↔ Xj i

x2i ↔ Xi i
X2i i ↔ Xi i

•Sherali-Adams inequalities: ∀i , j ∈ [[n]]
xixj ≥ 0 xi(1−xj) ≥ 0 (1−xi)(1−xj) ≥ 0
•Quadratic knapsack constraints: ∀i ∈ [[n]]
w⊤x xi ≥ q xi w⊤x (1− xi) ≥ q (1− xi)

→ Strengthends SDP models.

Maximal Insufficient Subsets
Maximal Insufficient Subset: S ⊆ [[n]]
∀j ∈ [[n]] \ S q − wj ≤

∑
i∈S
wi < q.

Valid inequality:
∑
i /∈S
Xi i ≥ 1. (MISC)

Let X∗: optimal solution of SDP model. Then minimize diag (X∗)⊤(1− a)
subject to w⊤a < q− ε

a ∈ {0, 1}n
(3)

Separation algorithm
For a SDP model M:

X∗← argmin(M) ; solve (3)
if Opt(3) ≥ 1 then (̸ ∃ (MISC) separating X∗)

return X∗

else
S ← correct

(
S =

{
i s.t.a∗i = 1

})
(⋆)

return argmin (M with (MISC))
end if
(⋆) while

∑
i∈S wi < q

S ← S ∪
{
argminj wj

}
while end; remove the last item added

Metrics
Imprecision

imp(x) =
c⊤x

∥c∥1

Compacity

comp(S) =
1

n
max
i ,j∈S

{
j − i − 1

∣∣∣∣ i , j

consecutive

} Fractionnality

frac(x) =
2√
n

∥∥∥∥x− ⌊x+ 12 · 1
⌋∥∥∥∥
2

(Fig 3: λ = 10−2) (Fig 4: λ = 10−3)

(Fig 5: λ = 10−4) (Fig 6: λ = 10−5)
(Fig 7: Computation time for the studied models on the benchmark

of 100 hard instances)

λ
Average fractionnality (frac)

Penalized SDP Separation Algorithm
λ = 100 2.779 · 10 -3 1.243 · 10 -5

λ = 10 -2 2.339 · 10 -3 1.311 · 10 -5

λ = 10 -4 1.673 · 10 -2 5.069 · 10 -5

λ = 10 -6 4.326 · 10 -2 8.510 · 10 -5

(Fig 8: Average fractionnality with the separation procedure)
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